yolo_box_op.h 6.3 KB
Newer Older
D
dengkaipeng 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
D
dengkaipeng 已提交
16
#include "paddle/fluid/platform/hostdevice.h"
D
dengkaipeng 已提交
17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
D
dengkaipeng 已提交
24
HOSTDEVICE inline T sigmoid(T x) {
D
dengkaipeng 已提交
25 26 27 28
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
29
HOSTDEVICE inline void GetYoloBox(T* box, const T* x, const int* anchors, int i,
30 31 32
                                  int j, int an_idx, int grid_size_h,
                                  int grid_size_w, int input_size_h,
                                  int input_size_w, int index, int stride,
33 34
                                  int img_height, int img_width, float scale,
                                  float bias) {
35
  box[0] = (i + sigmoid<T>(x[index]) * scale + bias) * img_width / grid_size_w;
36
  box[1] = (j + sigmoid<T>(x[index + stride]) * scale + bias) * img_height /
37
           grid_size_h;
D
dengkaipeng 已提交
38
  box[2] = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] * img_width /
39
           input_size_w;
D
dengkaipeng 已提交
40
  box[3] = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] *
41
           img_height / input_size_h;
D
dengkaipeng 已提交
42 43
}

D
dengkaipeng 已提交
44 45 46
HOSTDEVICE inline int GetEntryIndex(int batch, int an_idx, int hw_idx,
                                    int an_num, int an_stride, int stride,
                                    int entry) {
D
dengkaipeng 已提交
47 48 49 50
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
D
dengkaipeng 已提交
51
HOSTDEVICE inline void CalcDetectionBox(T* boxes, T* box, const int box_idx,
D
dengkaipeng 已提交
52
                                        const int img_height,
53
                                        const int img_width, bool clip_bbox) {
D
dengkaipeng 已提交
54 55 56 57
  boxes[box_idx] = box[0] - box[2] / 2;
  boxes[box_idx + 1] = box[1] - box[3] / 2;
  boxes[box_idx + 2] = box[0] + box[2] / 2;
  boxes[box_idx + 3] = box[1] + box[3] / 2;
D
dengkaipeng 已提交
58

59 60 61 62 63 64 65 66 67 68 69
  if (clip_bbox) {
    boxes[box_idx] = boxes[box_idx] > 0 ? boxes[box_idx] : static_cast<T>(0);
    boxes[box_idx + 1] =
        boxes[box_idx + 1] > 0 ? boxes[box_idx + 1] : static_cast<T>(0);
    boxes[box_idx + 2] = boxes[box_idx + 2] < img_width - 1
                             ? boxes[box_idx + 2]
                             : static_cast<T>(img_width - 1);
    boxes[box_idx + 3] = boxes[box_idx + 3] < img_height - 1
                             ? boxes[box_idx + 3]
                             : static_cast<T>(img_height - 1);
  }
D
dengkaipeng 已提交
70 71 72
}

template <typename T>
D
dengkaipeng 已提交
73 74 75 76
HOSTDEVICE inline void CalcLabelScore(T* scores, const T* input,
                                      const int label_idx, const int score_idx,
                                      const int class_num, const T conf,
                                      const int stride) {
D
dengkaipeng 已提交
77 78 79 80 81 82 83 84 85 86
  for (int i = 0; i < class_num; i++) {
    scores[score_idx + i] = conf * sigmoid<T>(input[label_idx + i * stride]);
  }
}

template <typename T>
class YoloBoxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
87
    auto* imgsize = ctx.Input<Tensor>("ImgSize");
D
dengkaipeng 已提交
88 89 90 91 92 93
    auto* boxes = ctx.Output<Tensor>("Boxes");
    auto* scores = ctx.Output<Tensor>("Scores");
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float conf_thresh = ctx.Attr<float>("conf_thresh");
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");
94
    bool clip_bbox = ctx.Attr<bool>("clip_bbox");
95 96
    float scale = ctx.Attr<float>("scale_x_y");
    float bias = -0.5 * (scale - 1.);
D
dengkaipeng 已提交
97 98 99 100 101 102

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int box_num = boxes->dims()[1];
    const int an_num = anchors.size() / 2;
103 104
    int input_size_h = downsample_ratio * h;
    int input_size_w = downsample_ratio * w;
D
dengkaipeng 已提交
105 106 107 108

    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

D
dengkaipeng 已提交
109 110 111 112
    Tensor anchors_;
    auto anchors_data =
        anchors_.mutable_data<int>({an_num * 2}, ctx.GetPlace());
    std::copy(anchors.begin(), anchors.end(), anchors_data);
D
dengkaipeng 已提交
113

D
dengkaipeng 已提交
114
    const T* input_data = input->data<T>();
115
    const int* imgsize_data = imgsize->data<int>();
D
dengkaipeng 已提交
116 117 118 119 120 121
    T* boxes_data = boxes->mutable_data<T>({n, box_num, 4}, ctx.GetPlace());
    memset(boxes_data, 0, boxes->numel() * sizeof(T));
    T* scores_data =
        scores->mutable_data<T>({n, box_num, class_num}, ctx.GetPlace());
    memset(scores_data, 0, scores->numel() * sizeof(T));

D
dengkaipeng 已提交
122
    T box[4];
D
dengkaipeng 已提交
123
    for (int i = 0; i < n; i++) {
124 125 126
      int img_height = imgsize_data[2 * i];
      int img_width = imgsize_data[2 * i + 1];

D
dengkaipeng 已提交
127 128 129 130 131 132 133 134 135 136 137 138
      for (int j = 0; j < an_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
            int obj_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 4);
            T conf = sigmoid<T>(input_data[obj_idx]);
            if (conf < conf_thresh) {
              continue;
            }

            int box_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 0);
139 140 141
            GetYoloBox<T>(box, input_data, anchors_data, l, k, j, h, w,
                          input_size_h, input_size_w, box_idx, stride,
                          img_height, img_width, scale, bias);
D
dengkaipeng 已提交
142
            box_idx = (i * box_num + j * stride + k * w + l) * 4;
143 144
            CalcDetectionBox<T>(boxes_data, box, box_idx, img_height, img_width,
                                clip_bbox);
D
dengkaipeng 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

            int label_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 5);
            int score_idx = (i * box_num + j * stride + k * w + l) * class_num;
            CalcLabelScore<T>(scores_data, input_data, label_idx, score_idx,
                              class_num, conf, stride);
          }
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle