yolo_box_op.h 5.1 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
D
dengkaipeng 已提交
16
#include "paddle/fluid/platform/hostdevice.h"
D
dengkaipeng 已提交
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;


template <typename T>
D
dengkaipeng 已提交
25
HOSTDEVICE inline T sigmoid(T x) {
D
dengkaipeng 已提交
26 27 28 29
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
30
HOSTDEVICE inline void GetYoloBox(T* box, const T* x, const int* anchors, int i,
D
dengkaipeng 已提交
31 32 33
                                    int j, int an_idx, int grid_size,
                                    int input_size, int index, int stride,
                                    int img_height, int img_width) {
D
dengkaipeng 已提交
34 35 36
  box[0] = (i + sigmoid<T>(x[index])) * img_width / grid_size;
  box[1] = (j + sigmoid<T>(x[index + stride])) * img_height / grid_size;
  box[2] = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] * img_width /
37
        input_size;
D
dengkaipeng 已提交
38
  box[3] = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] * img_height /
39
        input_size;
D
dengkaipeng 已提交
40 41
}

D
dengkaipeng 已提交
42 43 44
HOSTDEVICE inline int GetEntryIndex(int batch, int an_idx, int hw_idx,
                                    int an_num, int an_stride, int stride,
                                    int entry) {
D
dengkaipeng 已提交
45 46 47 48
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
D
dengkaipeng 已提交
49
HOSTDEVICE inline void CalcDetectionBox(T* boxes, T* box,
D
dengkaipeng 已提交
50
                                        const int box_idx) {
D
dengkaipeng 已提交
51 52 53 54
  boxes[box_idx] = box[0] - box[2] / 2;
  boxes[box_idx + 1] = box[1] - box[3] / 2;
  boxes[box_idx + 2] = box[0] + box[2] / 2;
  boxes[box_idx + 3] = box[1] + box[3] / 2;
D
dengkaipeng 已提交
55 56 57
}

template <typename T>
D
dengkaipeng 已提交
58 59 60 61
HOSTDEVICE inline void CalcLabelScore(T* scores, const T* input,
                                      const int label_idx, const int score_idx,
                                      const int class_num, const T conf,
                                      const int stride) {
D
dengkaipeng 已提交
62 63 64 65 66 67 68 69 70 71
  for (int i = 0; i < class_num; i++) {
    scores[score_idx + i] = conf * sigmoid<T>(input[label_idx + i * stride]);
  }
}

template <typename T>
class YoloBoxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
72
    auto* imgsize = ctx.Input<Tensor>("ImgSize");
D
dengkaipeng 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    auto* boxes = ctx.Output<Tensor>("Boxes");
    auto* scores = ctx.Output<Tensor>("Scores");
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float conf_thresh = ctx.Attr<float>("conf_thresh");
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int box_num = boxes->dims()[1];
    const int an_num = anchors.size() / 2;
    int input_size = downsample_ratio * h;

    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

D
dengkaipeng 已提交
90 91 92
    int anchors_[anchors.size()];
    std::copy(anchors.begin(), anchors.end(), anchors_);

D
dengkaipeng 已提交
93
    const T* input_data = input->data<T>();
94
    const int* imgsize_data = imgsize->data<int>();
D
dengkaipeng 已提交
95 96 97 98 99 100
    T* boxes_data = boxes->mutable_data<T>({n, box_num, 4}, ctx.GetPlace());
    memset(boxes_data, 0, boxes->numel() * sizeof(T));
    T* scores_data =
        scores->mutable_data<T>({n, box_num, class_num}, ctx.GetPlace());
    memset(scores_data, 0, scores->numel() * sizeof(T));

D
dengkaipeng 已提交
101
    T box[4];
D
dengkaipeng 已提交
102
    for (int i = 0; i < n; i++) {
103 104 105
      int img_height = imgsize_data[2 * i];
      int img_width = imgsize_data[2 * i + 1];

D
dengkaipeng 已提交
106 107 108 109 110 111 112 113 114 115 116 117
      for (int j = 0; j < an_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
            int obj_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 4);
            T conf = sigmoid<T>(input_data[obj_idx]);
            if (conf < conf_thresh) {
              continue;
            }

            int box_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 0);
D
dengkaipeng 已提交
118 119
	    GetYoloBox<T>(box, input_data, anchors_, l, k, j, h, input_size,
		          box_idx, stride, img_height, img_width);
D
dengkaipeng 已提交
120
            box_idx = (i * box_num + j * stride + k * w + l) * 4;
D
dengkaipeng 已提交
121
            CalcDetectionBox<T>(boxes_data, box, box_idx);
D
dengkaipeng 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

            int label_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 5);
            int score_idx = (i * box_num + j * stride + k * w + l) * class_num;
            CalcLabelScore<T>(scores_data, input_data, label_idx, score_idx,
                              class_num, conf, stride);
          }
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle