yolo_box_op.h 5.8 KB
Newer Older
D
dengkaipeng 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
D
dengkaipeng 已提交
16
#include "paddle/fluid/platform/hostdevice.h"
D
dengkaipeng 已提交
17 18 19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
D
dengkaipeng 已提交
24
HOSTDEVICE inline T sigmoid(T x) {
D
dengkaipeng 已提交
25 26 27 28
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
D
dengkaipeng 已提交
29
HOSTDEVICE inline void GetYoloBox(T* box, const T* x, const int* anchors, int i,
D
dengkaipeng 已提交
30 31 32
                                  int j, int an_idx, int grid_size,
                                  int input_size, int index, int stride,
                                  int img_height, int img_width) {
D
dengkaipeng 已提交
33 34 35
  box[0] = (i + sigmoid<T>(x[index])) * img_width / grid_size;
  box[1] = (j + sigmoid<T>(x[index + stride])) * img_height / grid_size;
  box[2] = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] * img_width /
D
dengkaipeng 已提交
36 37 38
           input_size;
  box[3] = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] *
           img_height / input_size;
D
dengkaipeng 已提交
39 40
}

D
dengkaipeng 已提交
41 42 43
HOSTDEVICE inline int GetEntryIndex(int batch, int an_idx, int hw_idx,
                                    int an_num, int an_stride, int stride,
                                    int entry) {
D
dengkaipeng 已提交
44 45 46 47
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
D
dengkaipeng 已提交
48
HOSTDEVICE inline void CalcDetectionBox(T* boxes, T* box, const int box_idx,
D
dengkaipeng 已提交
49 50
                                        const int img_height,
                                        const int img_width) {
D
dengkaipeng 已提交
51 52 53 54
  boxes[box_idx] = box[0] - box[2] / 2;
  boxes[box_idx + 1] = box[1] - box[3] / 2;
  boxes[box_idx + 2] = box[0] + box[2] / 2;
  boxes[box_idx + 3] = box[1] + box[3] / 2;
D
dengkaipeng 已提交
55

D
dengkaipeng 已提交
56
  boxes[box_idx] = boxes[box_idx] > 0 ? boxes[box_idx] : static_cast<T>(0);
D
dengkaipeng 已提交
57 58 59 60 61 62 63 64
  boxes[box_idx + 1] =
      boxes[box_idx + 1] > 0 ? boxes[box_idx + 1] : static_cast<T>(0);
  boxes[box_idx + 2] = boxes[box_idx + 2] < img_width - 1
                           ? boxes[box_idx + 2]
                           : static_cast<T>(img_width - 1);
  boxes[box_idx + 3] = boxes[box_idx + 3] < img_height - 1
                           ? boxes[box_idx + 3]
                           : static_cast<T>(img_height - 1);
D
dengkaipeng 已提交
65 66 67
}

template <typename T>
D
dengkaipeng 已提交
68 69 70 71
HOSTDEVICE inline void CalcLabelScore(T* scores, const T* input,
                                      const int label_idx, const int score_idx,
                                      const int class_num, const T conf,
                                      const int stride) {
D
dengkaipeng 已提交
72 73 74 75 76 77 78 79 80 81
  for (int i = 0; i < class_num; i++) {
    scores[score_idx + i] = conf * sigmoid<T>(input[label_idx + i * stride]);
  }
}

template <typename T>
class YoloBoxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
82
    auto* imgsize = ctx.Input<Tensor>("ImgSize");
D
dengkaipeng 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    auto* boxes = ctx.Output<Tensor>("Boxes");
    auto* scores = ctx.Output<Tensor>("Scores");
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float conf_thresh = ctx.Attr<float>("conf_thresh");
    int downsample_ratio = ctx.Attr<int>("downsample_ratio");

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int box_num = boxes->dims()[1];
    const int an_num = anchors.size() / 2;
    int input_size = downsample_ratio * h;

    const int stride = h * w;
    const int an_stride = (class_num + 5) * stride;

D
dengkaipeng 已提交
100 101 102 103
    Tensor anchors_;
    auto anchors_data =
        anchors_.mutable_data<int>({an_num * 2}, ctx.GetPlace());
    std::copy(anchors.begin(), anchors.end(), anchors_data);
D
dengkaipeng 已提交
104

D
dengkaipeng 已提交
105
    const T* input_data = input->data<T>();
106
    const int* imgsize_data = imgsize->data<int>();
D
dengkaipeng 已提交
107 108 109 110 111 112
    T* boxes_data = boxes->mutable_data<T>({n, box_num, 4}, ctx.GetPlace());
    memset(boxes_data, 0, boxes->numel() * sizeof(T));
    T* scores_data =
        scores->mutable_data<T>({n, box_num, class_num}, ctx.GetPlace());
    memset(scores_data, 0, scores->numel() * sizeof(T));

D
dengkaipeng 已提交
113
    T box[4];
D
dengkaipeng 已提交
114
    for (int i = 0; i < n; i++) {
115 116 117
      int img_height = imgsize_data[2 * i];
      int img_width = imgsize_data[2 * i + 1];

D
dengkaipeng 已提交
118 119 120 121 122 123 124 125 126 127 128 129
      for (int j = 0; j < an_num; j++) {
        for (int k = 0; k < h; k++) {
          for (int l = 0; l < w; l++) {
            int obj_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 4);
            T conf = sigmoid<T>(input_data[obj_idx]);
            if (conf < conf_thresh) {
              continue;
            }

            int box_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 0);
D
dengkaipeng 已提交
130 131
            GetYoloBox<T>(box, input_data, anchors_data, l, k, j, h, input_size,
                          box_idx, stride, img_height, img_width);
D
dengkaipeng 已提交
132
            box_idx = (i * box_num + j * stride + k * w + l) * 4;
D
dengkaipeng 已提交
133 134
            CalcDetectionBox<T>(boxes_data, box, box_idx, img_height,
                                img_width);
D
dengkaipeng 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

            int label_idx =
                GetEntryIndex(i, j, k * w + l, an_num, an_stride, stride, 5);
            int score_idx = (i * box_num + j * stride + k * w + l) * class_num;
            CalcLabelScore<T>(scores_data, input_data, label_idx, score_idx,
                              class_num, conf, stride);
          }
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle