gemm_conv2d_op.h 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hedaoyuan 已提交
17
#include "paddle/framework/eigen.h"
18 19 20 21 22 23 24 25 26 27
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename Place, typename T>
H
hedaoyuan 已提交
28
class GemmConv2DKernel : public framework::OpKernel {
29 30 31
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
32 33 34 35
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
36 37 38 39 40
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
H
hedaoyuan 已提交
41
    int groups = context.Attr<int>("groups");
42 43 44

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
H
hedaoyuan 已提交
45 46 47
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
    int output_channels = output->dims()[1];
48 49 50 51 52 53
    int output_height = output->dims()[2];
    int output_width = output->dims()[3];

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
H
hedaoyuan 已提交
54
    // use col_shape in the im2col calculation
H
hedaoyuan 已提交
55 56
    framework::DDim col_shape = {input_channels / groups, filter_height,
                                 filter_width, output_height, output_width};
H
hedaoyuan 已提交
57 58
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
H
hedaoyuan 已提交
59
        input_channels / groups * filter_height * filter_width,
H
hedaoyuan 已提交
60
        output_height * output_width};
H
hedaoyuan 已提交
61
    Tensor col;
H
hedaoyuan 已提交
62
    col.mutable_data<T>(col_shape, context.GetPlace());
H
hedaoyuan 已提交
63 64 65 66 67
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);
68 69 70

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
H
hedaoyuan 已提交
71 72
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
73 74 75 76 77
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {output_channels,
                                           output_height * output_width};

H
hedaoyuan 已提交
78
    auto device_context = context.device_context();
79

H
hedaoyuan 已提交
80
    // convolution operator: im2col + gemm
H
hedaoyuan 已提交
81 82
    int in_step = input_channels / groups;
    int out_step = output_channels / groups;
83
    for (int i = 0; i < batch_size; i++) {
84 85
      Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
H
hedaoyuan 已提交
86 87
      for (int g = 0; g < groups; g++) {
        // im2col
88
        Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
89 90 91 92
        im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
               device_context);

        // gemm
93
        Tensor out_slice = out_batch.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
94
        Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
95 96
        math::matmul<Place, T>(device_context, filter_slice, false, col_matrix,
                               false, T(1.0), &out_slice, T(0.0));
H
hedaoyuan 已提交
97
      }
98 99 100 101 102
    }
  }
};

template <typename Place, typename T>
H
hedaoyuan 已提交
103
class GemmConvGrad2DKernel : public framework::OpKernel {
104 105
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
106 107 108 109 110
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
111
    Tensor* filter_grad =
H
hedaoyuan 已提交
112
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
113 114 115 116 117

    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
118 119 120

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
121
    int groups = context.Attr<int>("groups");
H
hedaoyuan 已提交
122 123 124

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
H
hedaoyuan 已提交
125 126
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
127
    int output_channels = output_grad->dims()[1];
H
hedaoyuan 已提交
128 129 130 131 132 133 134 135 136
    int output_height = output_grad->dims()[2];
    int output_width = output_grad->dims()[3];

    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        col2im;
    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
H
hedaoyuan 已提交
137
    // use col_shape in the im2col and col2im calculation
138 139
    framework::DDim col_shape = {input_channels / groups, filter_height,
                                 filter_width, output_height, output_width};
H
hedaoyuan 已提交
140 141
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
142
        input_channels / groups * filter_height * filter_width,
H
hedaoyuan 已提交
143 144
        output_height * output_width};
    Tensor col;
H
hedaoyuan 已提交
145
    col.mutable_data<T>(col_shape, context.GetPlace());
H
hedaoyuan 已提交
146 147 148 149 150
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);
H
hedaoyuan 已提交
151 152 153 154 155 156 157

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
    framework::DDim output_matrix_shape = {
        output_grad->dims()[1],
        output_grad->dims()[2] * output_grad->dims()[3]};

H
hedaoyuan 已提交
158 159
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
160 161
    filter.Resize(filter_matrix_shape);

H
hedaoyuan 已提交
162
    auto device_context = context.device_context();
H
hedaoyuan 已提交
163

H
hedaoyuan 已提交
164 165
    // convolution backward input operator:  gemm + col2im
    // convolution backward weight operator: im2col + gemm
166 167
    int in_step = input_channels / groups;
    int out_step = output_channels / groups;
H
hedaoyuan 已提交
168 169 170 171 172 173 174 175 176 177 178 179

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      auto t = framework::EigenVector<T>::Flatten(*input_grad);
      t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch =
            input_grad->Slice<T>(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
180
          // gemm
H
hedaoyuan 已提交
181 182
          Tensor out_grad_slice =
              out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
183 184
          Tensor filter_slice =
              filter.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
185 186 187
          math::matmul<Place, T>(device_context, filter_slice, true,
                                 out_grad_slice, false, T(1.0), &col_matrix,
                                 T(0.0));
188 189 190 191 192 193 194

          // col2im
          Tensor in_grad_slice =
              in_grad_batch.Slice<T>(g * in_step, (g + 1) * in_step);
          col2im(in_grad_slice, col, strides[0], strides[1], paddings[0],
                 paddings[1], device_context);
        }
H
hedaoyuan 已提交
195 196
      }
    }
197

H
hedaoyuan 已提交
198 199 200 201 202 203 204 205 206 207 208 209
    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
      auto t = framework::EigenVector<T>::Flatten(filter_grad_);
      t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
210
          // im2col
H
hedaoyuan 已提交
211 212
          Tensor out_grad_slice =
              out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
213 214 215 216 217 218
          Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
          im2col(in_slice, col, strides[0], strides[1], paddings[0],
                 paddings[1], device_context);

          // gemm
          Tensor filter_grad_slice =
H
hedaoyuan 已提交
219
              filter_grad_.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
220 221 222
          math::matmul<Place, T>(device_context, out_grad_slice, false,
                                 col_matrix, true, T(1.0), &filter_grad_slice,
                                 T(1.0));
223
        }
224
      }
H
hedaoyuan 已提交
225
    }
226 227 228 229 230
  }
};

}  // namespace operators
}  // namespace paddle