gemm_conv2d_op.h 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hedaoyuan 已提交
17
#include "paddle/framework/eigen.h"
18 19 20 21 22 23 24 25 26 27
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename Place, typename T>
H
hedaoyuan 已提交
28
class GemmConv2DKernel : public framework::OpKernel {
29 30 31
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
32 33 34 35
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
36 37 38 39 40
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
H
hedaoyuan 已提交
41
    int groups = context.Attr<int>("groups");
42 43 44

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
H
hedaoyuan 已提交
45 46 47
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
    int output_channels = output->dims()[1];
48 49 50 51 52 53
    int output_height = output->dims()[2];
    int output_width = output->dims()[3];

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
H
hedaoyuan 已提交
54
    // use col_shape in the im2col calculation
H
hedaoyuan 已提交
55 56
    framework::DDim col_shape = {input_channels / groups, filter_height,
                                 filter_width, output_height, output_width};
H
hedaoyuan 已提交
57 58
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
H
hedaoyuan 已提交
59
        input_channels / groups * filter_height * filter_width,
H
hedaoyuan 已提交
60
        output_height * output_width};
H
hedaoyuan 已提交
61
    Tensor col;
H
hedaoyuan 已提交
62
    col.mutable_data<T>(col_shape, context.GetPlace());
H
hedaoyuan 已提交
63 64 65 66 67
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);
68 69 70

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
H
hedaoyuan 已提交
71 72
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
73 74 75 76 77 78 79
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {output_channels,
                                           output_height * output_width};

    auto* device_context =
        const_cast<platform::DeviceContext*>(context.device_context_);
80

H
hedaoyuan 已提交
81
    // convolution operator: im2col + gemm
H
hedaoyuan 已提交
82 83
    int in_step = input_channels / groups;
    int out_step = output_channels / groups;
84
    for (int i = 0; i < batch_size; i++) {
85 86
      Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
H
hedaoyuan 已提交
87 88
      for (int g = 0; g < groups; g++) {
        // im2col
89
        Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
90 91 92 93
        im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
               device_context);

        // gemm
94
        Tensor out_slice = out_batch.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
95 96 97 98
        Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
        math::matmul<Place, T>(filter_slice, false, col_matrix, false, T(1.0),
                               &out_slice, T(0.0), device_context);
      }
99 100 101 102 103
    }
  }
};

template <typename Place, typename T>
H
hedaoyuan 已提交
104
class GemmConvGrad2DKernel : public framework::OpKernel {
105 106
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
107 108 109 110 111
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
112
    Tensor* filter_grad_ =
H
hedaoyuan 已提交
113
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
114 115 116 117 118

    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
119 120 121 122 123
    Tensor filter_grad;
    if (filter_grad_) {
      filter_grad_->mutable_data<T>(context.GetPlace());
      filter_grad = *filter_grad_;
    }
H
hedaoyuan 已提交
124 125 126

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
127
    int groups = context.Attr<int>("groups");
H
hedaoyuan 已提交
128 129 130

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
H
hedaoyuan 已提交
131 132
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
133
    int output_channels = output_grad->dims()[1];
H
hedaoyuan 已提交
134 135 136 137 138 139 140 141 142
    int output_height = output_grad->dims()[2];
    int output_width = output_grad->dims()[3];

    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        col2im;
    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
H
hedaoyuan 已提交
143
    // use col_shape in the im2col and col2im calculation
144 145
    framework::DDim col_shape = {input_channels / groups, filter_height,
                                 filter_width, output_height, output_width};
H
hedaoyuan 已提交
146 147
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
148
        input_channels / groups * filter_height * filter_width,
H
hedaoyuan 已提交
149 150
        output_height * output_width};
    Tensor col;
H
hedaoyuan 已提交
151
    col.mutable_data<T>(col_shape, context.GetPlace());
H
hedaoyuan 已提交
152 153 154 155 156
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);
H
hedaoyuan 已提交
157 158 159 160 161 162 163

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
    framework::DDim output_matrix_shape = {
        output_grad->dims()[1],
        output_grad->dims()[2] * output_grad->dims()[3]};

H
hedaoyuan 已提交
164 165
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
166 167
    filter.Resize(filter_matrix_shape);

168 169 170 171 172 173 174 175 176 177 178 179 180
    if (filter_grad_) {
      filter_grad.Resize(filter_matrix_shape);
      auto t1 = framework::EigenVector<T>::Flatten(filter_grad);
      t1.device(context.GetEigenDevice<Place>()) =
          t1.constant(static_cast<T>(0));
    }

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      auto t2 = framework::EigenVector<T>::Flatten(*input_grad);
      t2.device(context.GetEigenDevice<Place>()) =
          t2.constant(static_cast<T>(0));
    }
H
hedaoyuan 已提交
181

H
hedaoyuan 已提交
182 183 184
    auto* device_context =
        const_cast<platform::DeviceContext*>(context.device_context_);

H
hedaoyuan 已提交
185 186
    // convolution backward input operator:  gemm + col2im
    // convolution backward weight operator: im2col + gemm
187 188
    int in_step = input_channels / groups;
    int out_step = output_channels / groups;
189 190
    Tensor in_grad_batch;
    Tensor in_batch;
H
hedaoyuan 已提交
191
    for (int i = 0; i < batch_size; i++) {
192
      Tensor out_grad_batch =
H
hedaoyuan 已提交
193
          output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
194 195 196 197 198 199
      if (input_grad) {
        in_grad_batch = input_grad->Slice<T>(i, i + 1).Resize(input_shape);
      }
      if (filter_grad_) {
        in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
      }
200 201 202
      for (int g = 0; g < groups; g++) {
        Tensor out_grad_slice =
            out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        if (input_grad) {
          // gemm
          Tensor filter_slice =
              filter.Slice<T>(g * out_step, (g + 1) * out_step);
          math::matmul<Place, T>(filter_slice, true, out_grad_slice, false,
                                 T(1.0), &col_matrix, T(0.0), device_context);

          // col2im
          Tensor in_grad_slice =
              in_grad_batch.Slice<T>(g * in_step, (g + 1) * in_step);
          col2im(in_grad_slice, col, strides[0], strides[1], paddings[0],
                 paddings[1], device_context);
        }

        if (filter_grad_) {
          // im2col
          Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
          im2col(in_slice, col, strides[0], strides[1], paddings[0],
                 paddings[1], device_context);

          // gemm
          Tensor filter_grad_slice =
              filter_grad.Slice<T>(g * out_step, (g + 1) * out_step);
          math::matmul<Place, T>(out_grad_slice, false, col_matrix, true,
                                 T(1.0), &filter_grad_slice, T(1.0),
                                 device_context);
        }
230
      }
H
hedaoyuan 已提交
231
    }
232 233 234 235 236
  }
};

}  // namespace operators
}  // namespace paddle