gemm_conv2d_op.h 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hedaoyuan 已提交
17
#include "paddle/framework/eigen.h"
18 19 20 21 22 23 24 25 26 27
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename Place, typename T>
H
hedaoyuan 已提交
28
class GemmConv2DKernel : public framework::OpKernel {
29 30 31
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
32 33 34 35
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
36 37 38 39 40
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
H
hedaoyuan 已提交
41
    int groups = context.Attr<int>("groups");
42 43 44

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
H
hedaoyuan 已提交
45 46 47
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
    int output_channels = output->dims()[1];
48 49 50 51 52 53
    int output_height = output->dims()[2];
    int output_width = output->dims()[3];

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
H
hedaoyuan 已提交
54
    // use col_shape in the im2col calculation
H
hedaoyuan 已提交
55 56
    framework::DDim col_shape = {input_channels / groups, filter_height,
                                 filter_width, output_height, output_width};
H
hedaoyuan 已提交
57 58
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
H
hedaoyuan 已提交
59
        input_channels / groups * filter_height * filter_width,
H
hedaoyuan 已提交
60
        output_height * output_width};
H
hedaoyuan 已提交
61
    Tensor col;
H
hedaoyuan 已提交
62
    col.mutable_data<T>(col_shape, context.GetPlace());
H
hedaoyuan 已提交
63 64 65 66 67
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);
68 69 70

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
H
hedaoyuan 已提交
71 72
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
73 74 75 76 77 78 79
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {output_channels,
                                           output_height * output_width};

    auto* device_context =
        const_cast<platform::DeviceContext*>(context.device_context_);
80

H
hedaoyuan 已提交
81
    // convolution operator: im2col + gemm
H
hedaoyuan 已提交
82 83
    int in_step = input_channels / groups;
    int out_step = output_channels / groups;
84
    for (int i = 0; i < batch_size; i++) {
85 86
      Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice<T>(i, i + 1).Resize(output_matrix_shape);
H
hedaoyuan 已提交
87 88
      for (int g = 0; g < groups; g++) {
        // im2col
89
        Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
90 91 92 93
        im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
               device_context);

        // gemm
94
        Tensor out_slice = out_batch.Slice<T>(g * out_step, (g + 1) * out_step);
H
hedaoyuan 已提交
95 96 97 98
        Tensor filter_slice = filter.Slice<T>(g * out_step, (g + 1) * out_step);
        math::matmul<Place, T>(filter_slice, false, col_matrix, false, T(1.0),
                               &out_slice, T(0.0), device_context);
      }
99 100 101 102 103
    }
  }
};

template <typename Place, typename T>
H
hedaoyuan 已提交
104
class GemmConvGrad2DKernel : public framework::OpKernel {
105 106
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
107 108 109 110 111
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
112
    Tensor* filter_grad =
H
hedaoyuan 已提交
113
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
114 115 116 117 118

    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
119 120 121

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
122
    int groups = context.Attr<int>("groups");
H
hedaoyuan 已提交
123 124 125

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
H
hedaoyuan 已提交
126 127
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
128
    int output_channels = output_grad->dims()[1];
H
hedaoyuan 已提交
129 130 131 132 133 134 135 136 137
    int output_height = output_grad->dims()[2];
    int output_width = output_grad->dims()[3];

    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        col2im;
    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
H
hedaoyuan 已提交
138
    // use col_shape in the im2col and col2im calculation
139 140
    framework::DDim col_shape = {input_channels / groups, filter_height,
                                 filter_width, output_height, output_width};
H
hedaoyuan 已提交
141 142
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
143
        input_channels / groups * filter_height * filter_width,
H
hedaoyuan 已提交
144 145
        output_height * output_width};
    Tensor col;
H
hedaoyuan 已提交
146
    col.mutable_data<T>(col_shape, context.GetPlace());
H
hedaoyuan 已提交
147 148 149 150 151
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);
H
hedaoyuan 已提交
152 153 154 155 156 157 158

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
    framework::DDim output_matrix_shape = {
        output_grad->dims()[1],
        output_grad->dims()[2] * output_grad->dims()[3]};

H
hedaoyuan 已提交
159 160
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
161 162 163 164 165
    filter.Resize(filter_matrix_shape);

    auto* device_context =
        const_cast<platform::DeviceContext*>(context.device_context_);

H
hedaoyuan 已提交
166 167
    // convolution backward input operator:  gemm + col2im
    // convolution backward weight operator: im2col + gemm
168 169
    int in_step = input_channels / groups;
    int out_step = output_channels / groups;
H
hedaoyuan 已提交
170 171 172 173 174 175 176 177 178 179 180 181

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      auto t = framework::EigenVector<T>::Flatten(*input_grad);
      t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch =
            input_grad->Slice<T>(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
182
          // gemm
H
hedaoyuan 已提交
183 184
          Tensor out_grad_slice =
              out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
185 186 187 188 189 190 191 192 193 194 195
          Tensor filter_slice =
              filter.Slice<T>(g * out_step, (g + 1) * out_step);
          math::matmul<Place, T>(filter_slice, true, out_grad_slice, false,
                                 T(1.0), &col_matrix, T(0.0), device_context);

          // col2im
          Tensor in_grad_slice =
              in_grad_batch.Slice<T>(g * in_step, (g + 1) * in_step);
          col2im(in_grad_slice, col, strides[0], strides[1], paddings[0],
                 paddings[1], device_context);
        }
H
hedaoyuan 已提交
196 197
      }
    }
198

H
hedaoyuan 已提交
199 200 201 202 203 204 205 206 207 208 209 210
    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
      auto t = framework::EigenVector<T>::Flatten(filter_grad_);
      t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));

      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice<T>(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = input->Slice<T>(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
211
          // im2col
H
hedaoyuan 已提交
212 213
          Tensor out_grad_slice =
              out_grad_batch.Slice<T>(g * out_step, (g + 1) * out_step);
214 215 216 217 218 219
          Tensor in_slice = in_batch.Slice<T>(g * in_step, (g + 1) * in_step);
          im2col(in_slice, col, strides[0], strides[1], paddings[0],
                 paddings[1], device_context);

          // gemm
          Tensor filter_grad_slice =
H
hedaoyuan 已提交
220
              filter_grad_.Slice<T>(g * out_step, (g + 1) * out_step);
221 222 223 224
          math::matmul<Place, T>(out_grad_slice, false, col_matrix, true,
                                 T(1.0), &filter_grad_slice, T(1.0),
                                 device_context);
        }
225
      }
H
hedaoyuan 已提交
226
    }
227 228 229 230 231
  }
};

}  // namespace operators
}  // namespace paddle