test_detection.py 22.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import paddle.fluid as fluid
import paddle.fluid.layers as layers
19
from paddle.fluid.layers import detection
20
from paddle.fluid.framework import Program, program_guard
C
chengduoZH 已提交
21
import unittest
22 23


24
class TestDetection(unittest.TestCase):
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(
                name='target_box',
Y
Yuan Gao 已提交
40
                shape=[2, 10, 4],
41 42 43 44
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
Y
Yuan Gao 已提交
45
                shape=[2, 10, 20],
46 47 48 49
                append_batch_size=False,
                dtype='float32')
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
50 51 52 53 54 55
            out2, index = layers.detection_output(
                scores=scores,
                loc=loc,
                prior_box=pb,
                prior_box_var=pbv,
                return_index=True)
56
            self.assertIsNotNone(out)
57 58
            self.assertIsNotNone(out2)
            self.assertIsNotNone(index)
59
            self.assertEqual(out.shape[-1], 6)
60
        print(str(program))
61

J
jerrywgz 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
    def test_box_coder_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=[0.1, 0.2, 0.1, 0.2],
                target_box=y,
                code_type='encode_center_size')
            self.assertIsNotNone(bcoder)
        print(str(program))

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size')
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

108
        print(str(program))
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    def test_ssd_loss(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='int32')
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
            self.assertIsNotNone(loss)
            self.assertEqual(loss.shape[-1], 1)
132
        print(str(program))
133 134


135 136
class TestPriorBox(unittest.TestCase):
    def test_prior_box(self):
137 138 139 140 141 142 143 144 145 146 147
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.],
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
                flip=True,
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4


class TestPriorBox2(unittest.TestCase):
    def test_prior_box(self):
        program = Program()
        with program_guard(program):
            data_shape = [None, 3, None, None]
            images = fluid.data(name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.0],
                aspect_ratios=[1.],
167 168 169 170 171
                flip=True,
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[3] == 4
172 173


R
ruri 已提交
174 175
class TestDensityPriorBox(unittest.TestCase):
    def test_density_prior_box(self):
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        program = Program()
        with program_guard(program):
            data_shape = [3, 224, 224]
            images = fluid.layers.data(
                name='pixel', shape=data_shape, dtype='float32')
            conv1 = fluid.layers.conv2d(images, 3, 3, 2)
            box, var = layers.density_prior_box(
                input=conv1,
                image=images,
                densities=[3, 4],
                fixed_sizes=[50., 60.],
                fixed_ratios=[1.0],
                clip=True)
            assert len(box.shape) == 4
            assert box.shape == var.shape
            assert box.shape[-1] == 4
R
ruri 已提交
192 193


194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class TestAnchorGenerator(unittest.TestCase):
    def test_anchor_generator(self):
        data_shape = [3, 224, 224]
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        anchor, var = fluid.layers.anchor_generator(
            input=conv1,
            anchor_sizes=[64, 128, 256, 512],
            aspect_ratios=[0.5, 1.0, 2.0],
            variance=[0.1, 0.1, 0.2, 0.2],
            stride=[16.0, 16.0],
            offset=0.5)
        assert len(anchor.shape) == 4
        assert anchor.shape == var.shape
        assert anchor.shape[3] == 4


212 213
class TestGenerateProposalLabels(unittest.TestCase):
    def test_generate_proposal_labels(self):
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        program = Program()
        with program_guard(program):
            rpn_rois = layers.data(
                name='rpn_rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[6],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[6, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            class_nums = 5
247
            outs = fluid.layers.generate_proposal_labels(
248 249 250 251 252 253 254 255 256 257 258 259
                rpn_rois=rpn_rois,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_boxes=gt_boxes,
                im_info=im_info,
                batch_size_per_im=2,
                fg_fraction=0.5,
                fg_thresh=0.5,
                bg_thresh_hi=0.5,
                bg_thresh_lo=0.0,
                bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
                class_nums=class_nums)
260 261 262 263 264
            rois = outs[0]
            labels_int32 = outs[1]
            bbox_targets = outs[2]
            bbox_inside_weights = outs[3]
            bbox_outside_weights = outs[4]
265 266 267 268 269 270 271 272
            assert rois.shape[1] == 4
            assert rois.shape[0] == labels_int32.shape[0]
            assert rois.shape[0] == bbox_targets.shape[0]
            assert rois.shape[0] == bbox_inside_weights.shape[0]
            assert rois.shape[0] == bbox_outside_weights.shape[0]
            assert bbox_targets.shape[1] == 4 * class_nums
            assert bbox_inside_weights.shape[1] == 4 * class_nums
            assert bbox_outside_weights.shape[1] == 4 * class_nums
273 274


275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
class TestGenerateMaskLabels(unittest.TestCase):
    def test_generate_mask_labels(self):
        program = Program()
        with program_guard(program):
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            gt_classes = layers.data(
                name='gt_classes',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            is_crowd = layers.data(
                name='is_crowd',
                shape=[2, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            gt_segms = layers.data(
                name='gt_segms',
                shape=[20, 2],
                dtype='float32',
                lod_level=3,
                append_batch_size=False)
            rois = layers.data(
                name='rois',
                shape=[4, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            labels_int32 = layers.data(
                name='labels_int32',
                shape=[4, 1],
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            num_classes = 5
            resolution = 14
            outs = fluid.layers.generate_mask_labels(
                im_info=im_info,
                gt_classes=gt_classes,
                is_crowd=is_crowd,
                gt_segms=gt_segms,
                rois=rois,
                labels_int32=labels_int32,
                num_classes=num_classes,
                resolution=resolution)
            mask_rois, roi_has_mask_int32, mask_int32 = outs
            assert mask_rois.shape[1] == 4
            assert mask_int32.shape[1] == num_classes * resolution * resolution


C
chengduoZH 已提交
331 332
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
333
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
334
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
335 336 337 338

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
Y
Yuan Gao 已提交
339
        assert mbox_locs.shape[1] == mbox_confs.shape[1]
C
chengduoZH 已提交
340 341

    def multi_box_head_output(self, data_shape):
C
chengduoZH 已提交
342 343
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
344 345 346 347 348
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
349

C
chengduoZH 已提交
350
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
351 352
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
353
            num_classes=21,
C
chengduoZH 已提交
354 355 356 357 358 359 360
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
361

C
chengduoZH 已提交
362
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
363 364


365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
class TestDetectionMAP(unittest.TestCase):
    def test_detection_map(self):
        program = Program()
        with program_guard(program):
            detect_res = layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

380
            map_out = detection.detection_map(detect_res, label, 21)
381 382
            self.assertIsNotNone(map_out)
            self.assertEqual(map_out.shape, (1, ))
383
        print(str(program))
384 385


386 387 388 389
class TestRpnTargetAssign(unittest.TestCase):
    def test_rpn_target_assign(self):
        program = Program()
        with program_guard(program):
390 391
            bbox_pred_shape = [10, 50, 4]
            cls_logits_shape = [10, 50, 2]
392 393
            anchor_shape = [50, 4]

394 395 396
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=bbox_pred_shape,
397 398
                append_batch_size=False,
                dtype='float32')
399 400 401
            cls_logits = layers.data(
                name='cls_logits',
                shape=cls_logits_shape,
402 403 404 405 406 407 408 409 410 411 412 413
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=anchor_shape,
                append_batch_size=False,
                dtype='float32')
414 415 416 417
            gt_boxes = layers.data(
                name='gt_boxes', shape=[4], lod_level=1, dtype='float32')
            is_crowd = layers.data(
                name='is_crowd',
418
                shape=[1, 10],
419 420 421 422 423 424 425 426 427
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
428
            outs = layers.rpn_target_assign(
429 430
                bbox_pred=bbox_pred,
                cls_logits=cls_logits,
431 432
                anchor_box=anchor_box,
                anchor_var=anchor_var,
433 434 435
                gt_boxes=gt_boxes,
                is_crowd=is_crowd,
                im_info=im_info,
436
                rpn_batch_size_per_im=256,
437 438
                rpn_straddle_thresh=0.0,
                rpn_fg_fraction=0.5,
439
                rpn_positive_overlap=0.7,
J
jerrywgz 已提交
440 441
                rpn_negative_overlap=0.3,
                use_random=False)
442 443 444 445 446
            pred_scores = outs[0]
            pred_loc = outs[1]
            tgt_lbl = outs[2]
            tgt_bbox = outs[3]
            bbox_inside_weight = outs[4]
447

448 449 450 451
            self.assertIsNotNone(pred_scores)
            self.assertIsNotNone(pred_loc)
            self.assertIsNotNone(tgt_lbl)
            self.assertIsNotNone(tgt_bbox)
J
jerrywgz 已提交
452
            self.assertIsNotNone(bbox_inside_weight)
453 454 455
            assert pred_scores.shape[1] == 1
            assert pred_loc.shape[1] == 4
            assert pred_loc.shape[1] == tgt_bbox.shape[1]
J
jerrywgz 已提交
456
            print(str(program))
457 458


459 460
class TestGenerateProposals(unittest.TestCase):
    def test_generate_proposals(self):
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
        program = Program()
        with program_guard(program):
            data_shape = [20, 64, 64]
            images = fluid.layers.data(
                name='images', shape=data_shape, dtype='float32')
            im_info = fluid.layers.data(
                name='im_info', shape=[3], dtype='float32')
            anchors, variances = fluid.layers.anchor_generator(
                name='anchor_generator',
                input=images,
                anchor_sizes=[32, 64],
                aspect_ratios=[1.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
            num_anchors = anchors.shape[2]
            scores = fluid.layers.data(
                name='scores', shape=[num_anchors, 8, 8], dtype='float32')
            bbox_deltas = fluid.layers.data(
                name='bbox_deltas',
                shape=[num_anchors * 4, 8, 8],
                dtype='float32')
            rpn_rois, rpn_roi_probs = fluid.layers.generate_proposals(
                name='generate_proposals',
                scores=scores,
                bbox_deltas=bbox_deltas,
                im_info=im_info,
                anchors=anchors,
                variances=variances,
                pre_nms_top_n=6000,
                post_nms_top_n=1000,
                nms_thresh=0.5,
                min_size=0.1,
                eta=1.0)
            self.assertIsNotNone(rpn_rois)
            self.assertIsNotNone(rpn_roi_probs)
            print(rpn_rois.shape)
498 499


D
dengkaipeng 已提交
500 501 502 503 504
class TestYoloDetection(unittest.TestCase):
    def test_yolov3_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
505 506 507
            gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
            gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
            gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
508 509
            loss = layers.yolov3_loss(
                x,
510 511
                gt_box,
                gt_label, [10, 13, 30, 13], [0, 1],
512 513 514
                10,
                0.7,
                32,
515
                gt_score=gt_score,
516
                use_label_smooth=False)
D
dengkaipeng 已提交
517 518 519

            self.assertIsNotNone(loss)

D
dengkaipeng 已提交
520 521 522 523
    def test_yolo_box(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
D
dengkaipeng 已提交
524
            img_size = layers.data(name='img_size', shape=[2], dtype='int32')
525 526
            boxes, scores = layers.yolo_box(x, img_size, [10, 13, 30, 13], 10,
                                            0.01, 32)
D
dengkaipeng 已提交
527 528 529
            self.assertIsNotNone(boxes)
            self.assertIsNotNone(scores)

D
dengkaipeng 已提交
530

J
jerrywgz 已提交
531 532 533 534 535 536 537 538 539 540
class TestBoxClip(unittest.TestCase):
    def test_box_clip(self):
        program = Program()
        with program_guard(program):
            input_box = layers.data(
                name='input_box', shape=[7, 4], dtype='float32', lod_level=1)
            im_info = layers.data(name='im_info', shape=[3], dtype='float32')
            out = layers.box_clip(input_box, im_info)
            self.assertIsNotNone(out)

J
jerrywgz 已提交
541

J
jerrywgz 已提交
542 543 544 545 546 547 548
class TestMulticlassNMS(unittest.TestCase):
    def test_multiclass_nms(self):
        program = Program()
        with program_guard(program):
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
J
jerrywgz 已提交
549
            output = layers.multiclass_nms(bboxes, scores, 0.3, 400, 200, 0.7)
J
jerrywgz 已提交
550 551
            self.assertIsNotNone(output)

J
jerrywgz 已提交
552

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
class TestMulticlassNMS2(unittest.TestCase):
    def test_multiclass_nms2(self):
        program = Program()
        with program_guard(program):
            bboxes = layers.data(
                name='bboxes', shape=[-1, 10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
            output = layers.multiclass_nms2(bboxes, scores, 0.3, 400, 200, 0.7)
            output2, index = layers.multiclass_nms2(
                bboxes, scores, 0.3, 400, 200, 0.7, return_index=True)
            self.assertIsNotNone(output)
            self.assertIsNotNone(output2)
            self.assertIsNotNone(index)


568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
class TestCollectFpnPropsals(unittest.TestCase):
    def test_collect_fpn_proposals(self):
        program = Program()
        with program_guard(program):
            multi_bboxes = []
            multi_scores = []
            for i in range(4):
                bboxes = layers.data(
                    name='rois' + str(i),
                    shape=[10, 4],
                    dtype='float32',
                    lod_level=1,
                    append_batch_size=False)
                scores = layers.data(
                    name='scores' + str(i),
                    shape=[10, 1],
                    dtype='float32',
                    lod_level=1,
                    append_batch_size=False)
                multi_bboxes.append(bboxes)
                multi_scores.append(scores)
            fpn_rois = layers.collect_fpn_proposals(multi_bboxes, multi_scores,
                                                    2, 5, 10)
            self.assertIsNotNone(fpn_rois)


594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
class TestDistributeFpnProposals(unittest.TestCase):
    def test_distribute_fpn_proposals(self):
        program = Program()
        with program_guard(program):
            fpn_rois = fluid.layers.data(
                name='data', shape=[4], dtype='float32', lod_level=1)
            multi_rois, restore_ind = layers.distribute_fpn_proposals(
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
                refer_level=4,
                refer_scale=224)
            self.assertIsNotNone(multi_rois)
            self.assertIsNotNone(restore_ind)


610 611
if __name__ == '__main__':
    unittest.main()