dropout_op.h 7.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14
#pragma once
Y
Yi Wang 已提交
15

Z
Zeng Jinle 已提交
16
#include <cstring>
17
#include <random>
P
phlrain 已提交
18
#include <string>
Y
Yi Wang 已提交
19

Z
Zhang Ting 已提交
20
#include <algorithm>
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/eigen.h"
22
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/op_registry.h"
Z
Zhang Ting 已提交
24
#include "paddle/fluid/platform/gpu_launch_config.h"
X
Xinghai Sun 已提交
25 26 27 28

namespace paddle {
namespace operators {

Z
Zhang Ting 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
// aligned vector generates vectorized load/store on CUDA
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
  T val[Size];
};

template <typename T>
inline int VectorizedSize(const T* pointer) {
  uint64_t address = reinterpret_cast<uint64_t>(pointer);
  constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value;  // NOLINT
  if (address % vec4 == 0) {
    return 4;
  }
  return 1;
}

#ifdef __NVCC__
template <typename T, typename MaskType, int VecSize>
__global__ void DropoutGradCUDAKernel(const T* dout, const MaskType* mask,
                                      const T factor, const int64_t size,
                                      T* dx) {
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;

  using LoadT = AlignedVector<T, VecSize>;
  using MaskLoadT = AlignedVector<MaskType, VecSize>;

  for (int i = idx * VecSize; i < size; i += blockDim.x * gridDim.x * VecSize) {
    T dout_vec[VecSize];
    LoadT* value = reinterpret_cast<LoadT*>(&dout_vec);
    *value = *reinterpret_cast<const LoadT*>(&dout[i]);

    T dx_vec[VecSize];
    MaskType mask_vec[VecSize];

#pragma unroll
    for (int ii = 0; ii < VecSize; ii++) {
      dx_vec[ii] = dout_vec[ii] * static_cast<T>(mask_vec[ii]) * factor;
    }

    *(reinterpret_cast<LoadT*>(&dx[i])) = *reinterpret_cast<LoadT*>(&dx_vec[0]);
  }
}
#endif

X
Xinghai Sun 已提交
73 74 75
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
76
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
X
Xinghai Sun 已提交
77

78 79 80 81
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

K
Kexin Zhao 已提交
82
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
83
class CPUDropoutKernel : public framework::OpKernel<T> {
84 85 86
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
M
mapingshuo 已提交
87 88
    auto* seed =
        context.HasInput("Seed") ? context.Input<Tensor>("Seed") : nullptr;
89
    auto* y = context.Output<Tensor>("Out");
90
    const auto* x_data = x->data<T>();
91
    auto* y_data = y->mutable_data<T>(context.GetPlace());
92
    float dropout_prob = context.Attr<float>("dropout_prob");
93

Z
Zeng Jinle 已提交
94
    auto& dropout_implementation =
P
phlrain 已提交
95
        context.Attr<std::string>("dropout_implementation");
Z
Zeng Jinle 已提交
96
    bool upscale_in_train = (dropout_implementation == "upscale_in_train");
97
    if (!context.Attr<bool>("is_test")) {
98
      auto* mask = context.Output<Tensor>("Mask");
Z
Zeng Jinle 已提交
99 100 101 102 103 104 105 106 107
      auto* mask_data = mask->mutable_data<uint8_t>(context.GetPlace());
      size_t size = framework::product(mask->dims());

      // Special case when dropout_prob is 1.0
      if (dropout_prob == 1.0f) {
        std::memset(y_data, 0, size * sizeof(*y_data));        // NOLINT
        std::memset(mask_data, 0, size * sizeof(*mask_data));  // NOLINT
        return;
      }
L
Leo Chen 已提交
108
      // std::minstd_rand engine;
109 110
      // NOTE: fixed seed should only be used in unittest or for debug.
      // Guarantee to use random seed in training.
L
Leo Chen 已提交
111
      int seed_data = 0;
M
mapingshuo 已提交
112 113 114 115
      if (seed) {
        seed_data = *(seed->data<int>());
      } else {
        seed_data =
L
Leo Chen 已提交
116
            context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : 0;
M
mapingshuo 已提交
117
      }
L
Leo Chen 已提交
118
      auto engine = framework::GetCPURandomEngine(seed_data);
119

120
      std::uniform_real_distribution<float> dist(0, 1);
P
phlrain 已提交
121

122
      for (size_t i = 0; i < size; ++i) {
L
Leo Chen 已提交
123
        if (dist(*engine) < dropout_prob) {
124 125 126
          mask_data[i] = 0;
          y_data[i] = 0;
        } else {
Z
Zeng Jinle 已提交
127 128
          mask_data[i] = 1;
          if (upscale_in_train) {
P
phlrain 已提交
129 130 131 132
            y_data[i] = x_data[i] / static_cast<T>(1.0f - dropout_prob);
          } else {
            y_data[i] = x_data[i];
          }
133
        }
134
      }
135
    } else {
Z
Zeng Jinle 已提交
136
      if (upscale_in_train) {
137 138 139 140 141 142 143 144
        const auto* X_data = x->data<T>();
        auto* Y_data = y->mutable_data<T>(context.GetPlace());
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
        for (int i = 0; i < x->numel(); i++) {
          Y_data[i] = X_data[i];
        }
P
phlrain 已提交
145
      } else {
146 147 148 149
        auto X = EigenMatrix<T>::Reshape(*x, 1);
        auto Y = EigenMatrix<T>::Reshape(*y, 1);
        auto& place =
            *context.template device_context<DeviceContext>().eigen_device();
P
phlrain 已提交
150 151
        Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
      }
152 153 154 155
    }
  }
};

Q
QI JUN 已提交
156
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
157
class DropoutGradKernel : public framework::OpKernel<T> {
X
Xinghai Sun 已提交
158 159
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
ceci3 已提交
160 161 162
    PADDLE_ENFORCE_EQ(!context.Attr<bool>("is_test"), true,
                      platform::errors::PreconditionNotMet(
                          "GradOp is only callable when is_test is false"));
163

X
Xinghai Sun 已提交
164 165 166 167
    auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* mask = context.Input<Tensor>("Mask");
    grad_x->mutable_data<T>(context.GetPlace());
Z
Zhang Ting 已提交
168
    auto size = grad_x->numel();
X
Xinghai Sun 已提交
169

170 171 172
    auto M = EigenVector<uint8_t>::Flatten(*mask);
    auto dX = EigenVector<T>::Flatten(*grad_x);
    auto dY = EigenVector<T>::Flatten(*grad_y);
X
Xinghai Sun 已提交
173

Q
QI JUN 已提交
174 175
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
Z
Zeng Jinle 已提交
176 177 178 179 180 181 182
    auto& dropout_implementation =
        context.Attr<std::string>("dropout_implementation");
    if (dropout_implementation == "upscale_in_train") {
      float dropout_prob = context.Attr<float>("dropout_prob");
      if (dropout_prob == 1.0f) {
        dX.device(place) = static_cast<T>(0) * dY;
      } else {
Z
Zhang Ting 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        int vec_size = VectorizedSize<T>(grad_y->data<T>());
        if (platform::is_gpu_place(context.GetPlace()) && vec_size == 4 &&
            size % 4 == 0) {
#ifdef __NVCC__
          auto factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
          auto stream = context.cuda_device_context().stream();
          platform::GpuLaunchConfig config = platform::GetGpuLaunchConfig1D(
              context.cuda_device_context(), size);
          DropoutGradCUDAKernel<
              T, uint8_t,
              4><<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
              grad_y->data<T>(), mask->data<uint8_t>(), factor, size,
              grad_x->data<T>());
#endif
        } else {
          dX.device(place) =
              dY * M.cast<T>() / static_cast<T>(1.0f - dropout_prob);
        }
Z
Zeng Jinle 已提交
201 202 203 204
      }
    } else {
      dX.device(place) = dY * M.cast<T>();
    }
X
Xinghai Sun 已提交
205 206 207 208 209
  }
};

}  // namespace operators
}  // namespace paddle