“33590b583f46a889a5071b8185b1b987559e5021”上不存在“python/paddle/fluid/dygraph/nn.py”
dropout_op.h 3.3 KB
Newer Older
X
Xinghai Sun 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14 15

#pragma once
16
#include <random>
X
Xinghai Sun 已提交
17 18 19 20 21 22 23 24 25 26 27
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
28
template <typename DeviceContext, typename T, typename AttrType>
Y
Yu Yang 已提交
29
class CPUDropoutKernel : public framework::OpKernel<T> {
30 31 32 33
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* y = context.Output<Tensor>("Out");
34
    const auto* x_data = x->data<T>();
35
    auto* y_data = y->mutable_data<T>(context.GetPlace());
36
    float dropout_prob = context.Attr<float>("dropout_prob");
37

38
    if (!context.Attr<bool>("is_test")) {
39 40
      auto* mask = context.Output<Tensor>("Mask");
      auto* mask_data = mask->mutable_data<T>(context.GetPlace());
41 42 43 44

      // NOTE: fixed seed should only be used in unittest or for debug.
      // Guarantee to use random seed in training.
      std::random_device rnd;
45
      std::minstd_rand engine;
46 47
      int seed =
          context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();
48
      engine.seed(seed);
49

50
      std::uniform_real_distribution<float> dist(0, 1);
51 52 53 54 55 56 57 58 59
      size_t size = framework::product(mask->dims());
      for (size_t i = 0; i < size; ++i) {
        if (dist(engine) < dropout_prob) {
          mask_data[i] = 0;
          y_data[i] = 0;
        } else {
          mask_data[i] = 1;
          y_data[i] = x_data[i];
        }
60
      }
61 62 63
    } else {
      auto X = EigenMatrix<T>::Reshape(*x, 1);
      auto Y = EigenMatrix<T>::Reshape(*y, 1);
Q
QI JUN 已提交
64 65
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
66
      Y.device(place) = X * (1.0f - dropout_prob);
67 68 69 70
    }
  }
};

Q
QI JUN 已提交
71
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
72
class DropoutGradKernel : public framework::OpKernel<T> {
X
Xinghai Sun 已提交
73 74
 public:
  void Compute(const framework::ExecutionContext& context) const override {
75 76
    PADDLE_ENFORCE(!context.Attr<bool>("is_test"),
                   "GradOp is only callable when is_test is false");
77

X
Xinghai Sun 已提交
78 79 80 81 82
    auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* mask = context.Input<Tensor>("Mask");
    grad_x->mutable_data<T>(context.GetPlace());

83 84 85
    auto M = EigenMatrix<T>::Reshape(*mask, 1);
    auto dX = EigenMatrix<T>::Reshape(*grad_x, 1);
    auto dY = EigenMatrix<T>::Reshape(*grad_y, 1);
X
Xinghai Sun 已提交
86

Q
QI JUN 已提交
87 88
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
89
    dX.device(place) = dY * M;
X
Xinghai Sun 已提交
90 91 92 93 94
  }
};

}  // namespace operators
}  // namespace paddle