dropout_op.h 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14
#pragma once
Y
Yi Wang 已提交
15

Z
Zeng Jinle 已提交
16
#include <cstring>
17
#include <random>
P
phlrain 已提交
18
#include <string>
Y
Yi Wang 已提交
19

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
X
Xinghai Sun 已提交
22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
29
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
X
Xinghai Sun 已提交
30

K
Kexin Zhao 已提交
31
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
32
class CPUDropoutKernel : public framework::OpKernel<T> {
33 34 35
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
M
mapingshuo 已提交
36 37
    auto* seed =
        context.HasInput("Seed") ? context.Input<Tensor>("Seed") : nullptr;
38
    auto* y = context.Output<Tensor>("Out");
39
    const auto* x_data = x->data<T>();
40
    auto* y_data = y->mutable_data<T>(context.GetPlace());
41
    float dropout_prob = context.Attr<float>("dropout_prob");
42

Z
Zeng Jinle 已提交
43
    auto& dropout_implementation =
P
phlrain 已提交
44
        context.Attr<std::string>("dropout_implementation");
Z
Zeng Jinle 已提交
45
    bool upscale_in_train = (dropout_implementation == "upscale_in_train");
46
    if (!context.Attr<bool>("is_test")) {
47
      auto* mask = context.Output<Tensor>("Mask");
Z
Zeng Jinle 已提交
48 49 50 51 52 53 54 55 56
      auto* mask_data = mask->mutable_data<uint8_t>(context.GetPlace());
      size_t size = framework::product(mask->dims());

      // Special case when dropout_prob is 1.0
      if (dropout_prob == 1.0f) {
        std::memset(y_data, 0, size * sizeof(*y_data));        // NOLINT
        std::memset(mask_data, 0, size * sizeof(*mask_data));  // NOLINT
        return;
      }
57 58 59 60

      // NOTE: fixed seed should only be used in unittest or for debug.
      // Guarantee to use random seed in training.
      std::random_device rnd;
61
      std::minstd_rand engine;
M
mapingshuo 已提交
62 63 64 65 66 67 68 69
      int seed_data;
      if (seed) {
        seed_data = *(seed->data<int>());
      } else {
        seed_data =
            context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();
      }
      engine.seed(seed_data);
70

71
      std::uniform_real_distribution<float> dist(0, 1);
P
phlrain 已提交
72

73 74 75 76 77
      for (size_t i = 0; i < size; ++i) {
        if (dist(engine) < dropout_prob) {
          mask_data[i] = 0;
          y_data[i] = 0;
        } else {
Z
Zeng Jinle 已提交
78 79
          mask_data[i] = 1;
          if (upscale_in_train) {
P
phlrain 已提交
80 81 82 83
            y_data[i] = x_data[i] / static_cast<T>(1.0f - dropout_prob);
          } else {
            y_data[i] = x_data[i];
          }
84
        }
85
      }
86
    } else {
Z
Zeng Jinle 已提交
87
      if (upscale_in_train) {
88 89 90 91 92 93 94 95
        const auto* X_data = x->data<T>();
        auto* Y_data = y->mutable_data<T>(context.GetPlace());
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
        for (int i = 0; i < x->numel(); i++) {
          Y_data[i] = X_data[i];
        }
P
phlrain 已提交
96
      } else {
97 98 99 100
        auto X = EigenMatrix<T>::Reshape(*x, 1);
        auto Y = EigenMatrix<T>::Reshape(*y, 1);
        auto& place =
            *context.template device_context<DeviceContext>().eigen_device();
P
phlrain 已提交
101 102
        Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
      }
103 104 105 106
    }
  }
};

Q
QI JUN 已提交
107
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
108
class DropoutGradKernel : public framework::OpKernel<T> {
X
Xinghai Sun 已提交
109 110
 public:
  void Compute(const framework::ExecutionContext& context) const override {
111 112
    PADDLE_ENFORCE(!context.Attr<bool>("is_test"),
                   "GradOp is only callable when is_test is false");
113

X
Xinghai Sun 已提交
114 115 116 117 118
    auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* mask = context.Input<Tensor>("Mask");
    grad_x->mutable_data<T>(context.GetPlace());

Z
Zeng Jinle 已提交
119
    auto M = EigenMatrix<uint8_t>::Reshape(*mask, 1);
120 121
    auto dX = EigenMatrix<T>::Reshape(*grad_x, 1);
    auto dY = EigenMatrix<T>::Reshape(*grad_y, 1);
X
Xinghai Sun 已提交
122

Q
QI JUN 已提交
123 124
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
Z
Zeng Jinle 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138

    auto& dropout_implementation =
        context.Attr<std::string>("dropout_implementation");
    if (dropout_implementation == "upscale_in_train") {
      float dropout_prob = context.Attr<float>("dropout_prob");
      if (dropout_prob == 1.0f) {
        dX.device(place) = static_cast<T>(0) * dY;
      } else {
        dX.device(place) =
            dY * M.cast<T>() / static_cast<T>(1.0f - dropout_prob);
      }
    } else {
      dX.device(place) = dY * M.cast<T>();
    }
X
Xinghai Sun 已提交
139 140 141 142 143
  }
};

}  // namespace operators
}  // namespace paddle