framework.py 31.7 KB
Newer Older
Y
Yu Yang 已提交
1
import collections
Q
qiaolongfei 已提交
2
import contextlib
3

Y
Yu Yang 已提交
4
import numpy as np
Q
qiaolongfei 已提交
5

6
import proto.framework_pb2 as framework_pb2
Q
qiaolongfei 已提交
7
from . import core
Y
Yu Yang 已提交
8

9 10
__all__ = [
    'Block', 'Variable', 'Program', 'Operator', 'default_startup_program',
Y
Yu Yang 已提交
11 12
    'default_main_program', 'program_guard', 'switch_startup_program',
    'switch_main_program'
13
]
Y
Yu Yang 已提交
14

Q
qiaolongfei 已提交
15 16 17 18 19 20 21 22 23 24 25 26
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
    return gradient name for a certain var name
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
27

Q
Qiao Longfei 已提交
28
def unique_name(prefix):
29 30 31 32 33 34 35 36 37
    """
    Generate unique names with prefix

    Args:
        prefix(str): The prefix of return string

    Returns(str): A unique string with the prefix

    """
Q
Qiao Longfei 已提交
38 39 40 41
    uid = core.unique_integer(prefix)  # unique during whole process.
    return "_".join([prefix, str(uid)])


42
def convert_np_dtype_to_dtype_(np_dtype):
43 44 45 46 47 48 49 50
    """
    Convert the data type in numpy to the data type in Paddle
    Args:
        np_dtype(np.dtype): the data type in numpy

    Returns(core.DataType): the data type in Paddle

    """
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
        return core.DataType.FP32
    elif dtype == np.float64:
        return core.DataType.FP64
    elif dtype == np.float16:
        return core.DataType.FP16
    elif dtype == np.int32:
        return core.DataType.INT32
    elif dtype == np.int16:
        return core.DataType.INT16
    elif dtype == np.int64:
        return core.DataType.INT64
    elif dtype == np.bool:
        return core.DataType.BOOL
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
71 72 73 74 75 76 77 78 79
    """
    Check the data type is floating or not.
    Args:
        dtype(np.dtype|core.DataType): data type.
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
80 81 82
    if not isinstance(dtype, core.DataType):
        dtype = convert_np_dtype_to_dtype_(dtype)

83
    return dtype in [core.DataType.FP16, core.DataType.FP32, core.DataType.FP64]
84 85


Y
Yang Yang(Tony) 已提交
86
def _debug_string_(proto, throw_on_error=True):
87 88 89 90 91 92 93 94 95 96 97
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
98
    error_fields = list()
Y
Yang Yang(Tony) 已提交
99
    if not proto.IsInitialized(error_fields) and throw_on_error:
Y
Yu Yang 已提交
100 101 102 103 104
        raise ValueError("{0} are not initialized\nThe message is {1}".format(
            error_fields, proto))
    return proto.__str__()


Y
Yu Yang 已提交
105
class Variable(object):
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    """
    Python variable. Every input and output of an operator is a variable. Every
    variable belongs to a block. The variable has a name and two variables in
    different blocks could have the same name.

    There are many kinds of variables. Please reference the framework.proto for
    details.

    Notes: The constructor of Variable should not be invoked directly. Please
    use `Block.create_var` to create a variable.

    >>> cur_program = Program()
    >>> cur_block = cur_program.current_block()
    >>> new_variable = cur_block.create_var(
    >>>                    name="X", shape=[-1, 23, 48], dtype='float32')

    Args:
        block(Block): The associated block. It will be passed by
            `Block.create_var` automatically.
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
        shape(tuple|list|None): The shape of variable. -1 means the batch size.
            Some kinds of variable do not contain shape, just set it to None.
        dtype(np.dtype|core.DataType|str): The data type of variable.
        lod_level(int): The level of lod tensor. 0 means there is not a time
            series data.
        persistable(bool): True if the variable should be saved as check point.
            Defaults to False.
        stop_gradient(bool): True if the variable will stop to calculate
            gradients when backward. Defaults to False.
    """

Y
Yu Yang 已提交
138 139
    def __init__(self,
                 block,
Y
Yu Yang 已提交
140
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
141 142 143 144
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
Q
QI JUN 已提交
145
                 persistable=None,
F
fengjiayi 已提交
146
                 error_clip=None,
Y
Yu Yang 已提交
147
                 stop_gradient=False,
Y
Yu Yang 已提交
148
                 **kwargs):
Y
Yu Yang 已提交
149
        self.block = block
F
fengjiayi 已提交
150
        self.error_clip = error_clip
Y
Yu Yang 已提交
151 152 153

        if name is None:
            name = Variable._unique_var_name_()
D
Dong Zhihong 已提交
154 155 156 157
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
158
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
159
            is_new_var = True
Y
Yu Yang 已提交
160

Y
Yu Yang 已提交
161 162 163 164 165 166 167 168
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
169
        if shape is not None:
Y
Yu Yang 已提交
170
            if is_new_var:
171
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
172 173 174 175 176 177 178 179
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
180
        if dtype is not None:
Y
Yu Yang 已提交
181
            if not isinstance(dtype, core.DataType):
182
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
183
            if is_new_var:
F
fengjiayi 已提交
184
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
185
            else:
F
fengjiayi 已提交
186
                old_dtype = self.dtype
Q
QI JUN 已提交
187
                if dtype != old_dtype:
Y
Yu Yang 已提交
188 189 190 191 192
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
193 194

        if lod_level is not None:
Y
Yu Yang 已提交
195
            if is_new_var:
196
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
197 198 199 200 201 202 203
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
204 205 206 207 208 209 210 211 212 213 214
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

Y
Yu Yang 已提交
215
        self.block.vars[name] = self
Y
Yu Yang 已提交
216
        self.op = None
Y
Yu Yang 已提交
217
        self.stop_gradient = stop_gradient
Y
Yu Yang 已提交
218

219
    def __str__(self):
Y
Yang Yang(Tony) 已提交
220 221 222
        return self.to_string(True)

    def to_string(self, throw_on_error):
223 224 225 226 227 228 229 230 231 232
        """
        Get debug string.

        Args:
            throw_on_error(bool): True if raise an exception when self is not
                intialized.

        Returns(str): The debug string.

        """
233 234
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
235
        return _debug_string_(proto, throw_on_error)
236 237 238

    __repr__ = __str__

239 240 241 242
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
243 244 245 246
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
247 248
    @property
    def name(self):
249
        return self.desc.name()
Y
Yu Yang 已提交
250 251 252 253

    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
254
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
255 256

    @property
F
fengjiayi 已提交
257 258
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
259 260 261

    @property
    def lod_level(self):
262
        return self.desc.lod_level()
Y
Yu Yang 已提交
263

Y
Yu Yang 已提交
264 265 266 267
    @property
    def type(self):
        return self.desc.type()

Y
Yu Yang 已提交
268 269
    @staticmethod
    def _unique_var_name_():
270 271 272
        prefix = "_generated_var"
        uid = core.unique_integer(prefix)  # unique during whole process.
        return "_".join([prefix, str(uid)])
Y
Yu Yang 已提交
273

Y
Yu Yang 已提交
274

F
fengjiayi 已提交
275 276 277
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
278 279 280

    Returns(list): list of OpProto

F
fengjiayi 已提交
281 282 283 284 285 286 287 288 289 290
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
291 292 293 294
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
            '_instance'), 'Please use `instance()` to get OpProtoHolder opject!'
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
311 312 313 314 315 316 317 318
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
319 320
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
321 322 323
        return self.op_proto_map[type]


Y
Yu Yang 已提交
324
class Operator(object):
325 326 327 328 329 330
    """
    Python Operator class. The operator represents the build in instructs in a
    Block. Users can use the build in instructs to describe their neural
    network.
    """

Y
Yu Yang 已提交
331 332
    def __init__(self,
                 block,
Y
Yu Yang 已提交
333
                 desc,
Y
Yu Yang 已提交
334 335 336 337
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        """
        Constructor.

        Notes: The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

        >>> cur_program = Program()
        >>> cur_block = cur_program.current_block()
        >>> # var1 += var2 + var3
        >>> cur_block.append_op(type="sum",
        >>>                     inputs={"X": [var1, var2, var3]},
        >>>                     outputs={"Out": [var1]})

        Args:
            block(Block): The block has the current operator
            desc(core.OpDesc): The protobuf description
            type(str): The type of operator.
            inputs(dict): The input dictionary. Key is the input parameter name.
                Value is a list of variables.
            outputs(dict): The output dictionary. Has same format with inputs
            attrs(dict): The attributes dictionary. Key is attribute name. Value
                is the attribute value. The attribute type should be as same as
                the type registered in C++
        """
Y
Yu Yang 已提交
362
        self.block = block
Y
Yu Yang 已提交
363
        self.desc = desc
T
typhoonzero 已提交
364 365 366 367
        # for clone a new operator
        self.inputs = inputs
        self.outputs = outputs
        self.attrs = attrs
F
fengjiayi 已提交
368 369 370 371 372
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
373
        self.desc.set_type(type)
F
fengjiayi 已提交
374
        proto = OpProtoHolder.instance().get_op_proto(type)
375

Y
Yang Yang(Tony) 已提交
376 377
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
378
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
379 380
                    return True
            return False
Q
QI JUN 已提交
381

Y
Yang Yang(Tony) 已提交
382 383 384 385 386 387 388
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
389 390 391 392
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
393 394
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
395 396 397
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
Y
Yang Yu 已提交
398 399 400 401
                        if isinstance(arg, basestring):
                            in_arg_names.append(arg)
                        else:
                            in_arg_names.append(arg.name)
402
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
403 404
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
405

Y
Yu Yang 已提交
406
        if outputs is not None:
407 408 409 410 411 412 413 414 415 416 417 418
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
                raise ValueError(
                    "Incorrect setting for output(s) of operator \"%s\". Need: [%s] Given: [%s]"
                    % (type, ", ".join(str(e) for e in need), ", ".join(
                        str(e) for e in given)))

F
fengjiayi 已提交
419
            for out_proto in proto.outputs:
420 421 422 423
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
424 425
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
426 427 428 429 430 431
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
432

Y
Yu Yang 已提交
433
        if attrs is not None:
434 435
            if not isinstance(attrs, dict):
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
436
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
437
                attr_name = attr.name
438
                if (not attr_name in attrs) or (attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
439
                    continue
Y
Yang Yang(Tony) 已提交
440
                if isinstance(attrs[attr_name], Block):
F
Update  
fengjiayi 已提交
441
                    self.desc.set_block_attr(attr_name, attrs[attr_name].desc)
T
typhoonzero 已提交
442 443 444 445
                elif isinstance(attrs[attr_name], core.BlockDesc) or \
                   isinstance(attrs[attr_name], core.ProgramDesc):
                    self.desc.set_serialized_attr(
                        attr_name, attrs[attr_name].serialize_to_string())
Y
Yang Yang(Tony) 已提交
446 447
                else:
                    self.desc.set_attr(attr_name, attrs[attr_name])
Y
Yu Yang 已提交
448

449
        self.desc.check_attrs()
Y
Yang Yang(Tony) 已提交
450
        no_kernel_op_set = {
Y
Yu Yang 已提交
451
            'feed', 'fetch', 'save', 'load', 'recurrent',
T
typhoonzero 已提交
452
            'rnn_memory_helper_grad', 'conditional_block', 'while', 'send',
Y
Yang Yang 已提交
453
            'recv', 'parallel_do'
Y
Yang Yang(Tony) 已提交
454
        }
455
        if type not in no_kernel_op_set:
Q
QI JUN 已提交
456
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
457
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
458

Y
Yang Yang(Tony) 已提交
459
    def to_string(self, throw_on_error):
460 461 462 463 464 465 466 467 468
        """
        To debug string.
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True

        Returns(str): The debug string.

        """
469 470
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
471 472 473 474
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
475 476 477

    __repr__ = __str__

F
fengjiayi 已提交
478 479 480 481 482
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
483 484 485 486 487 488 489 490 491
        """
        Get input arguments by the input parameter name
        Args:
            name(str): The input parameter name

        Returns(list): return the list of argument names associated with the
            specific parameter name.

        """
F
fengjiayi 已提交
492 493 494 495
        return self.desc.input(name)

    @property
    def input_names(self):
496 497 498 499 500
        """
        Get all input parameter names
        Returns(list): return a list of input parameter names

        """
F
fengjiayi 已提交
501 502 503
        return self.desc.input_names()

    def output(self, name):
504 505 506 507 508 509 510 511 512
        """
        Get output arguments by the output parameter name
        Args:
            name(str): The output parameter name

        Returns(list): return the list of argument names associated with the
            specific parameter name.

        """
F
fengjiayi 已提交
513 514 515 516
        return self.desc.output(name)

    @property
    def output_names(self):
517 518 519 520 521
        """
        Get all output parameter names
        Returns(list): return a list of output parameter names

        """
F
fengjiayi 已提交
522 523
        return self.desc.output_names()

524 525
    @property
    def idx(self):
526 527 528 529 530 531
        """
        Return the array index of current operator.
        Returns(int): The array index in block.ops array
        Raises:
            ValueError: when the operator is not found.
        """
532 533 534 535 536 537
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
538
    def has_attr(self, name):
539 540 541 542 543 544 545 546
        """
        operator has the attribute with name or not.
        Args:
            name(str): the attribute name

        Returns(bool): True if has this attribute.

        """
F
fengjiayi 已提交
547 548 549
        return self.desc.has_attr(name)

    def attr_type(self, name):
550 551 552 553 554 555 556 557
        """
        Get the type of attribute by attribute name
        Args:
            name(str): the attribute name

        Returns(core.AttrType): the attribute type

        """
F
fengjiayi 已提交
558 559 560 561
        return self.desc.attr_type(name)

    @property
    def attr_names(self):
562 563 564 565 566
        """
        Get all attribute names
        Returns(list): The list of attribute name

        """
F
fengjiayi 已提交
567 568 569
        return self.desc.attr_names()

    def attr(self, name):
570 571 572 573 574 575 576 577 578
        """
        Get attribute by name
        Args:
            name(str): the attribute name

        Returns(bool|int|str|float|list): The attribute value. The return value
            can be any valid attribute type.

        """
F
fengjiayi 已提交
579
        return self.desc.attr(name)
Y
Yu Yang 已提交
580

F
fengjiayi 已提交
581
    def block_attr(self, name):
582 583 584 585 586 587 588 589
        """
        Get the block attribute by name
        Args:
            name(str): the attribute name

        Returns(int): the block index

        """
F
fengjiayi 已提交
590
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
591 592


Y
Yu Yang 已提交
593 594
class Block(object):
    def __init__(self, program, idx):
Y
Yu Yang 已提交
595
        self.desc = program.desc.block(idx)
Y
Yu Yang 已提交
596
        self.vars = dict()  # var_name --> var
Y
Yu Yang 已提交
597
        self.ops = collections.deque()  # operator list
Y
Yu Yang 已提交
598
        self.program = program
T
typhoonzero 已提交
599
        self.removed_vars = dict()
Y
Yu Yang 已提交
600

601
    def __str__(self):
Y
Yang Yang(Tony) 已提交
602 603 604
        return self.to_string(True)

    def to_string(self, throw_on_error):
605 606
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.BlockDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
607
        return _debug_string_(proto, throw_on_error)
608 609 610

    __repr__ = __str__

Y
Yu Yang 已提交
611 612
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
613
        return self.desc.parent
Y
Yu Yang 已提交
614 615 616

    @property
    def idx(self):
Y
Yu Yang 已提交
617
        return self.desc.id
Y
Yu Yang 已提交
618

Q
Qiao Longfei 已提交
619
    def var(self, name):
Y
Yu Yang 已提交
620 621 622 623
        if not isinstance(name, basestring):
            raise TypeError()
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
624
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
625
        return v
Q
Qiao Longfei 已提交
626

F
fengjiayi 已提交
627 628 629 630 631 632 633 634 635 636 637
    def var_recursive(self, name):
        if self.has_var(name):
            return self.var(name)
        else:
            if self.idx == 0:
                raise ValueError("var %s is not in block(%d) nor its parents." %
                                 name, self.idx)
            else:
                parent_block = self.program.block(self.parent_idx)
                return parent_block.var_recursive(name)

Q
Qiao Longfei 已提交
638
    def all_parameters(self):
639 640 641 642 643
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
644

Y
Yu Yang 已提交
645
    def create_var(self, *args, **kwargs):
Q
Qiao Longfei 已提交
646
        var = Variable(self, *args, **kwargs)
647 648
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
649
        return var
Y
Yu Yang 已提交
650

Q
Qiao Longfei 已提交
651 652 653
    def has_var(self, name):
        return name in self.vars

Y
Yu Yang 已提交
654 655
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
656
        param = Parameter(global_block, *args, **kwargs)
657 658
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
659
        return param
Y
Yu Yang 已提交
660

Y
Yu Yang 已提交
661
    def append_op(self, *args, **kwargs):
Y
Yu Yang 已提交
662 663
        op_desc = self.desc.append_op()
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
664 665 666
        self.ops.append(op)
        return op

T
typhoonzero 已提交
667 668 669 670 671 672 673 674
    def delete_ops(self, ops):
        # remove from cpp
        # FIXME(typhoonzero): remove only the first occuracy.
        try:
            start = list(self.ops).index(ops[0])
            end = list(self.ops).index(ops[-1])
        except Exception, e:
            raise e
T
typhoonzero 已提交
675
        self.desc.remove_op(start, end + 1)
T
wip  
typhoonzero 已提交
676

Y
Yu Yang 已提交
677
    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
678 679
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
680 681 682
        self.ops.appendleft(op)
        return op

Q
Qiao Longfei 已提交
683 684 685 686 687 688 689
    def sync_with_cpp(self):
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

        # sync operators from cpp
690 691 692 693
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.appendleft(op)

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

727 728 729 730
    def copy_param_info_from(self, other):
        """
        Copy the information of parameters from other block
        Args:
731
            other(Block): other block
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
Y
Yu Yang 已提交
755
                clip_attr=p.clip_attr,
F
fengjiayi 已提交
756
                error_clip=p.error_clip,
757 758 759
                name=v.name)
            self.vars[new_p.name] = new_p

Y
Yu Yang 已提交
760 761

class Program(object):
762 763
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
764 765
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
766
        self._seed = 0
Y
Yu Yang 已提交
767

768
    def __str__(self):
Y
Yang Yang(Tony) 已提交
769 770 771
        return self.to_string(True)

    def to_string(self, throw_on_error):
772 773
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.ProgramDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
774
        return _debug_string_(proto, throw_on_error)
775

776 777 778
    def get_desc(self):
        return self.desc

Y
Yu Yang 已提交
779 780 781 782 783
    def clone(self):
        p = Program()
        p.desc = core.ProgramDesc(self.desc)
        p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
        p.sync_with_cpp()
784
        p.copy_param_info_from(self)
Y
Yu Yang 已提交
785
        return p
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
    def prune(self, targets):
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    t = t.op
                else:
                    raise ValueError(
                        "All targets of prune() can only be Variable or Operator."
                    )

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

807 808 809 810 811 812 813
    def inference_optimize(self):
        res = Program()
        res.desc = core.inference_optimize(self.desc)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

814 815 816 817
    @staticmethod
    def parse_from_string(binary_str):
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
818
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
819 820
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
821

D
dzhwinter 已提交
822 823 824 825 826 827 828 829 830 831
    @property
    def random_seed(self):
        return self._seed

    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
832 833
    def __repr__(self):
        return str(self)
834

Y
Yu Yang 已提交
835 836 837
    def global_block(self):
        return self.blocks[0]

Q
Qiao Longfei 已提交
838 839 840
    def block(self, index):
        return self.blocks[index]

Y
Yu Yang 已提交
841 842 843
    def current_block(self):
        return self.blocks[self.current_block_idx]

F
fengjiayi 已提交
844
    def append_backward(self, target, no_grad_set=None):
Q
Qiao Longfei 已提交
845 846 847
        """
        return map(param_name -> (grad_name, block_index, op_index))
        """
Q
Qiao Longfei 已提交
848
        assert isinstance(target, Variable)
F
fengjiayi 已提交
849 850
        if no_grad_set is None:
            no_grad_set = set()
Y
Yang Yang(Tony) 已提交
851 852 853 854 855 856 857 858
        try:
            param_to_grad_info = self.desc.append_backward(target.desc,
                                                           no_grad_set)
        except Exception as e:
            raise core.EnforceNotMet(
                str(e) + "\nCurrent protobuf is\n{0}".format(
                    self.to_string(False)))

Q
Qiao Longfei 已提交
859 860 861
        self.sync_with_cpp()
        return param_to_grad_info

F
update  
fengjiayi 已提交
862
    def create_block(self, parent_idx=None):
Y
Yu Yang 已提交
863
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
864 865 866
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
867 868 869 870 871 872 873
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
874 875 876 877 878 879
    def sync_with_cpp(self):
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

880 881
    def copy_param_info_from(self, other):
        """
882
        Copy the information of parameters from other program.
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

898 899 900 901 902
    def list_vars(self):
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
903

Y
Yu Yang 已提交
904 905 906 907 908 909 910 911 912 913 914
class Parameter(Variable):
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
915 916 917

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
918 919 920 921
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

922 923
        self.regularizer = kwargs.get('regularizer', None)

Y
Yu Yang 已提交
924 925
        self.clip_attr = kwargs.get('clip_attr', None)

Y
Yu Yang 已提交
926

Y
Yu Yang 已提交
927
# program is a global instance.
Y
Yu Yang 已提交
928 929
_main_program_ = Program()
_startup_program_ = Program()
930

931

932
def default_startup_program():
Y
Yu Yang 已提交
933 934 935
    """
    Get default startup program. In startup program, Paddle will initialize
    parameters, initialize nccl handle, etc.
936

Y
Yu Yang 已提交
937 938 939
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
940
    return _startup_program_
941

942

943
def default_main_program():
Y
Yu Yang 已提交
944 945
    """
    Get default main program. The main program is used for training or testing.
946

Y
Yu Yang 已提交
947 948 949
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
950
    return _main_program_
Y
Yu Yang 已提交
951 952 953 954 955


def switch_main_program(program):
    """
    Switch the main program to a new program.
956

Y
Yu Yang 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
971
    Switch the startup program to a new program
Y
Yu Yang 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
    Switch program with `with` statement
988

Y
Yu Yang 已提交
989 990 991 992
    Examples:
        >>> with program_guard(Program()):
        >>>   data = fluid.layers.data(...)
        >>>   hidden = fluid.layers.fc(...)
993

Y
Yu Yang 已提交
994 995
    Args:
        main_program(Program): New main program inside `with` statement
996
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
            None means do not change startup program.

    Returns:
        None
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)