math.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/pten/kernels/cpu/math.h"

17
#include "paddle/pten/api/ext/dispatch.h"
18
#include "paddle/pten/kernels/functions/cpu/elementwise.h"
19
#include "paddle/pten/kernels/functions/eigen/reduce.h"
20 21
#include "paddle/pten/kernels/functions/eigen/scale.h"
#include "paddle/pten/kernels/functions/eigen/sign.h"
22
#include "paddle/pten/kernels/functions/general/elementwise_functor.h"
23
#include "paddle/pten/kernels/functions/general/reduce_impl.h"
24 25 26 27

// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/platform/bfloat16.h"
28
#include "paddle/fluid/platform/complex.h"
29 30 31 32 33 34 35 36 37

namespace pten {

template <typename T>
void Sign(const CPUContext& dev_ctx, const DenseTensor& x, DenseTensor* out) {
  eigen::Sign<CPUContext, T>(dev_ctx, x, out);
}

template <typename T>
38 39 40 41 42 43 44 45 46 47
void Mean(const CPUContext& dev_ctx,
          const DenseTensor& x,
          const std::vector<int64_t>& dims,
          bool keep_dim,
          bool reduce_all,
          DataType in_dtype,
          DataType out_dtype,
          DenseTensor* out) {
  pten::general::Reduce<CPUContext, T, pten::eigen::MeanFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
}

template <typename T>
void Scale(const CPUContext& dev_ctx,
           const DenseTensor& x,
           float scale,
           float bias,
           bool bias_after_scale,
           DenseTensor* out) {
  eigen::Scale<CPUContext, T>(dev_ctx, x, scale, bias, bias_after_scale, out);
}

// TODO(chenweihang): now the ScaleTensor's dtype are same as x, so we cannot
// register its dtype def
template <typename T>
void ScaleHost(const CPUContext& dev_ctx,
               const DenseTensor& x,
               const DenseTensor& scale,
               float bias,
               bool bias_after_scale,
               DenseTensor* out) {
  eigen::Scale<CPUContext, T>(dev_ctx,
                              x,
                              static_cast<float>(*scale.data<T>()),
                              bias,
                              bias_after_scale,
                              out);
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
template <typename T>
void ElementwiseDiv(const CPUContext& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y,
                    int axis,
                    DenseTensor* out) {
  // allocate memory for out
  out->mutable_data<T>();
  if (x.dims() == y.dims() && std::is_floating_point<T>::value) {
    SameDimsElementwiseCompute<general::SameDimsDivFunctor<CPUContext, T>>()(
        dev_ctx, x, y, out);
  } else {
    auto x_dims = x.dims();
    auto y_dims = y.dims();
    if (x_dims.size() >= y_dims.size()) {
      ElementwiseCompute<general::DivFunctor<T>, T>(
          dev_ctx, x, y, axis, general::DivFunctor<T>(), out);
    } else {
      ElementwiseCompute<general::InverseDivFunctor<T>, T>(
          dev_ctx, x, y, axis, general::InverseDivFunctor<T>(), out);
    }
  }
}

101 102 103 104 105 106 107 108 109 110 111 112 113
template <typename T>
void Sum(const CPUContext& dev_ctx,
         const DenseTensor& x,
         const std::vector<int64_t>& dims,
         bool keep_dim,
         bool reduce_all,
         DataType in_dtype,
         DataType out_dtype,
         DenseTensor* out) {
  pten::general::Reduce<CPUContext, T, pten::eigen::SumFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

Y
YuanRisheng 已提交
114 115 116 117 118 119 120 121 122
// Create the definition of ElementwiseAdd
DEFINE_CPU_ELEMENTWISE_OP(Add)

// Create the definition of ElementwiseSub
DEFINE_CPU_ELEMENTWISE_OP(Sub)

// Create the definition of ElementwiseMul
DEFINE_CPU_ELEMENTWISE_OP(Mul)

123 124 125 126 127
}  // namespace pten

// TODO(chenweihang): replace by better impl
PT_REGISTER_MODULE(MathCPU);

128 129 130
using complex64 = ::paddle::platform::complex<float>;
using complex128 = ::paddle::platform::complex<double>;

131 132 133 134
// NOTE(chenweihang): using bfloat16 will cause redefine with xpu bfloat16
// using bfloat16 = ::paddle::platform::bfloat16;

PT_REGISTER_KERNEL("sign", CPU, ANY, pten::Sign, float, double) {}
135
PT_REGISTER_KERNEL("reduce_mean", CPU, ANY, pten::Mean, float, double, bool) {}
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
PT_REGISTER_KERNEL("scale",
                   CPU,
                   ANY,
                   pten::Scale,
                   float,
                   double,
                   paddle::platform::bfloat16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
PT_REGISTER_KERNEL("scale.host",
                   CPU,
                   ANY,
                   pten::ScaleHost,
                   float,
                   double,
                   paddle::platform::bfloat16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(1).SetBackend(pten::Backend::CPU);
}
162 163 164 165 166 167 168 169 170 171
PT_REGISTER_KERNEL("elementwise_add",
                   CPU,
                   ANY,
                   pten::ElementwiseAdd,
                   float,
                   double,
                   int,
                   int64_t,
                   complex64,
                   complex128) {}
172 173 174 175 176 177 178 179 180 181
PT_REGISTER_KERNEL("elementwise_sub",
                   CPU,
                   ANY,
                   pten::ElementwiseSub,
                   float,
                   double,
                   int,
                   int64_t,
                   complex64,
                   complex128) {}
182 183 184 185 186 187 188 189 190 191
PT_REGISTER_KERNEL("elementwise_div",
                   CPU,
                   ANY,
                   pten::ElementwiseDiv,
                   float,
                   double,
                   int,
                   int64_t,
                   complex64,
                   complex128) {}
Y
YuanRisheng 已提交
192 193 194 195 196 197 198 199 200 201 202
PT_REGISTER_KERNEL("elementwise_mul",
                   CPU,
                   ANY,
                   pten::ElementwiseMul,
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   complex64,
                   complex128) {}
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

PT_REGISTER_KERNEL("reduce_sum",
                   CPU,
                   ANY,
                   pten::Sum,
                   bool,
                   float,
                   double,
                   paddle::platform::float16,
                   int,
                   int64_t,
                   complex64,
                   complex128) {
  kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}