// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/pten/kernels/cpu/math.h" #include "paddle/pten/api/ext/dispatch.h" #include "paddle/pten/kernels/functions/cpu/elementwise.h" #include "paddle/pten/kernels/functions/eigen/reduce.h" #include "paddle/pten/kernels/functions/eigen/scale.h" #include "paddle/pten/kernels/functions/eigen/sign.h" #include "paddle/pten/kernels/functions/general/elementwise_functor.h" #include "paddle/pten/kernels/functions/general/reduce_impl.h" // See Note [ Why still include the fluid headers? ] #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/platform/bfloat16.h" #include "paddle/fluid/platform/complex.h" namespace pten { template void Sign(const CPUContext& dev_ctx, const DenseTensor& x, DenseTensor* out) { eigen::Sign(dev_ctx, x, out); } template void Mean(const CPUContext& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DataType in_dtype, DataType out_dtype, DenseTensor* out) { pten::general::Reduce( dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out); } template void Scale(const CPUContext& dev_ctx, const DenseTensor& x, float scale, float bias, bool bias_after_scale, DenseTensor* out) { eigen::Scale(dev_ctx, x, scale, bias, bias_after_scale, out); } // TODO(chenweihang): now the ScaleTensor's dtype are same as x, so we cannot // register its dtype def template void ScaleHost(const CPUContext& dev_ctx, const DenseTensor& x, const DenseTensor& scale, float bias, bool bias_after_scale, DenseTensor* out) { eigen::Scale(dev_ctx, x, static_cast(*scale.data()), bias, bias_after_scale, out); } template void ElementwiseDiv(const CPUContext& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { // allocate memory for out out->mutable_data(); if (x.dims() == y.dims() && std::is_floating_point::value) { SameDimsElementwiseCompute>()( dev_ctx, x, y, out); } else { auto x_dims = x.dims(); auto y_dims = y.dims(); if (x_dims.size() >= y_dims.size()) { ElementwiseCompute, T>( dev_ctx, x, y, axis, general::DivFunctor(), out); } else { ElementwiseCompute, T>( dev_ctx, x, y, axis, general::InverseDivFunctor(), out); } } } template void Sum(const CPUContext& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DataType in_dtype, DataType out_dtype, DenseTensor* out) { pten::general::Reduce( dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out); } // Create the definition of ElementwiseAdd DEFINE_CPU_ELEMENTWISE_OP(Add) // Create the definition of ElementwiseSub DEFINE_CPU_ELEMENTWISE_OP(Sub) // Create the definition of ElementwiseMul DEFINE_CPU_ELEMENTWISE_OP(Mul) } // namespace pten // TODO(chenweihang): replace by better impl PT_REGISTER_MODULE(MathCPU); using complex64 = ::paddle::platform::complex; using complex128 = ::paddle::platform::complex; // NOTE(chenweihang): using bfloat16 will cause redefine with xpu bfloat16 // using bfloat16 = ::paddle::platform::bfloat16; PT_REGISTER_KERNEL("sign", CPU, ANY, pten::Sign, float, double) {} PT_REGISTER_KERNEL("reduce_mean", CPU, ANY, pten::Mean, float, double, bool) {} PT_REGISTER_KERNEL("scale", CPU, ANY, pten::Scale, float, double, paddle::platform::bfloat16, uint8_t, int8_t, int16_t, int, int64_t) {} PT_REGISTER_KERNEL("scale.host", CPU, ANY, pten::ScaleHost, float, double, paddle::platform::bfloat16, uint8_t, int8_t, int16_t, int, int64_t) { kernel->InputAt(1).SetBackend(pten::Backend::CPU); } PT_REGISTER_KERNEL("elementwise_add", CPU, ANY, pten::ElementwiseAdd, float, double, int, int64_t, complex64, complex128) {} PT_REGISTER_KERNEL("elementwise_sub", CPU, ANY, pten::ElementwiseSub, float, double, int, int64_t, complex64, complex128) {} PT_REGISTER_KERNEL("elementwise_div", CPU, ANY, pten::ElementwiseDiv, float, double, int, int64_t, complex64, complex128) {} PT_REGISTER_KERNEL("elementwise_mul", CPU, ANY, pten::ElementwiseMul, float, double, int, int64_t, bool, complex64, complex128) {} PT_REGISTER_KERNEL("reduce_sum", CPU, ANY, pten::Sum, bool, float, double, paddle::platform::float16, int, int64_t, complex64, complex128) { kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED); }