dataset.py 36.6 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tianshuo78520a 已提交
14
"""This is definition of dataset class, which is high performance IO."""
D
dongdaxiang 已提交
15 16 17 18

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
D
dongdaxiang 已提交
19
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
20 21 22


class DatasetFactory(object):
23 24
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
25
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
26 27 28
    the default is "QueueDataset".

    Example:
29 30 31 32 33
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

34
    """
D
dongdaxiang 已提交
35

D
dongdaxiang 已提交
36
    def __init__(self):
37
        """ Init. """
D
dongdaxiang 已提交
38 39
        pass

40
    def create_dataset(self, datafeed_class="QueueDataset"):
41
        """
H
hutuxian 已提交
42
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
43
        the default is "QueueDataset".
D
dongdaxiang 已提交
44

45 46 47 48
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
49
        Examples:
50 51 52 53 54
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

55
        """
D
dongdaxiang 已提交
56 57
        try:
            dataset = globals()[datafeed_class]()
58
            return dataset
D
dongdaxiang 已提交
59 60 61 62 63 64
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
65
    """ Base dataset class. """
D
dongdaxiang 已提交
66

D
dongdaxiang 已提交
67
    def __init__(self):
68
        """ Init. """
D
dongdaxiang 已提交
69 70 71 72
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
73
        self.dataset = core.Dataset("MultiSlotDataset")
74
        self.thread_num = 1
J
jiaqi 已提交
75
        self.filelist = []
D
dongdaxiang 已提交
76 77 78 79 80 81

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

82 83 84 85 86 87
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
88 89

        Args:
90
            pipe_command(str): pipe command
91

D
dongdaxiang 已提交
92 93 94
        """
        self.proto_desc.pipe_command = pipe_command

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    def set_rank_offset(self, rank_offset):
        """
        Set rank_offset for merge_pv. It set the message of Pv.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_rank_offset("rank_offset")

        Args:
            rank_offset(str): rank_offset's name

        """
        self.proto_desc.rank_offset = rank_offset

112 113 114 115 116 117 118 119
    def set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
T
tianshuo78520a 已提交
120
            fea_eval(bool): whether enable fea eval mode to enable slots shuffle.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

D
dongdaxiang 已提交
157 158 159 160
    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

161 162 163 164 165 166
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
167 168

        Args:
169
            batch_size(int): batch size
D
dongdaxiang 已提交
170 171 172 173

        """
        self.proto_desc.batch_size = batch_size

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    def set_pv_batch_size(self, pv_batch_size):
        """
        Set pv batch size. It will be effective during enable_pv_merge

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pv_batch(128)
        Args:
            pv_batch_size(int): pv batch size

        """
        self.proto_desc.pv_batch_size = pv_batch_size

190
    def set_thread(self, thread_num):
191 192 193
        """
        Set thread num, it is the num of readers.

194 195 196 197 198 199
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
200 201

        Args:
202
            thread_num(int): thread num
203
        """
204
        self.dataset.set_thread_num(thread_num)
205
        self.thread_num = thread_num
206 207

    def set_filelist(self, filelist):
208 209 210
        """
        Set file list in current worker.

211 212 213 214 215 216
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
217 218

        Args:
219
            filelist(list): file list
220
        """
221
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
222
        self.filelist = filelist
223

D
dongdaxiang 已提交
224
    def set_use_var(self, var_list):
225 226 227
        """
        Set Variables which you will use.

228 229 230 231 232 233
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
234 235

        Args:
236
            var_list(list): variable list
237
        """
238
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
239
        for var in var_list:
240
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
241 242 243 244
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
245
                slot_var.shape.extend(var.shape)
246
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
247
                slot_var.type = "float"
248
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
249 250 251 252 253 254
                slot_var.type = "uint64"
            else:
                raise ValueError(
                    "Currently, fluid.dataset only supports dtype=float32 and dtype=int64"
                )

255
    def set_hdfs_config(self, fs_name, fs_ugi):
256 257 258
        """
        Set hdfs config: fs name ad ugi

259 260 261 262 263 264
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
265 266

        Args:
267 268
            fs_name(str): fs name
            fs_ugi(str): fs ugi
269
        """
270 271
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    def set_download_cmd(self, download_cmd):
        """
        Set customized download cmd: download_cmd

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_download_cmd("./read_from_afs")

        Args:
            download_cmd(str): customized download command
        """
        self.dataset.set_download_cmd(download_cmd)

288
    def _prepare_to_run(self):
289 290 291 292
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
293 294 295
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
296
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
297 298 299 300
        self.dataset.create_readers()

    def _finish_to_run(self):
        self.dataset.destroy_readers()
301

D
dongdaxiang 已提交
302 303 304 305
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

306 307 308 309 310 311
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
312 313 314 315 316 317

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

318 319 320 321 322 323
    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    def check_use_var_with_data_generator(self, var_list, data_generator_class,
                                          test_file):
        """
         Var consistency insepection of use_var_list and data_generator data.

        Examples:
            .. code-block:: python

              # required: skiptest
              import paddle.fluid as fluid
              from dataset_generator import CTRDataset
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              generator_class = CTRDataset()
              dataset.check_use_var_with_data_generator([data, label], generator_class, "data/part-00000")

        Args:
            var_list(list): variable list
            data_generator_class(class): data_generator class
            test_file(str): local test file path
        """

        f = open(test_file, "r")
        var_len = len(var_list)

        while True:
            line = f.readline()
            if line:
                line_iter = data_generator_class.generate_sample(line)
                for user_parsed_line in line_iter():
                    data_gen_len = len(user_parsed_line)
                    if var_len != data_gen_len:
                        raise ValueError(
                            "var length mismatch error: var_list = %s vs data_generator = %s"
                            % (var_len, data_gen_len))

                    for i, ele in enumerate(user_parsed_line):
                        if len(ele[1]) == 0:
                            raise ValueError(
                                "var length error: var %s's length in data_generator is 0"
                                % ele[0])

                        if var_list[
                                i].dtype == core.VarDesc.VarType.FP32 and not all(
                                    isinstance(ele, float) for ele in ele[1]):
                            raise TypeError(
                                "var dtype mismatch error: var name = %s, var type in var_list = %s, while var in data_generator contains non-float value, which is %s \n"
                                "Please check if order of var_list and data_generator are aligned. \n"
                                "Please check if var's type in data_generator is correct."
                                % (ele[0], "float", ele[1]))

                        if (var_list[i].dtype == core.VarDesc.VarType.INT64 or
                                var_list[i].dtype == core.VarDesc.VarType.INT32
                            ) and not all(
                                isinstance(ele, int) for ele in ele[1]):
                            raise TypeError(
                                "var dtype mismatch error: var name = %s, var type in var_list = %s, while var in data_generator contains non-int value, which is %s \n"
                                "Please check if order of var_list and data_generator are aligned. \n"
                                "Please check if var's type in data_generator is correct."
                                % (ele[0], "int", ele[1]))

            else:
                break

        f.close()

D
dongdaxiang 已提交
389 390

class InMemoryDataset(DatasetBase):
391 392
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
393 394
    and shuffle data before training.
    This class should be created by DatasetFactory
395 396

    Example:
397
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
398
    """
D
dongdaxiang 已提交
399

D
dongdaxiang 已提交
400
    def __init__(self):
401
        """ Init. """
402 403
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
404
        self.fleet_send_batch_size = None
405
        self.is_user_set_queue_num = False
J
jiaqi 已提交
406
        self.queue_num = None
407 408
        self.parse_ins_id = False
        self.parse_content = False
409 410 411
        self.parse_logkey = False
        self.merge_by_sid = True
        self.enable_pv_merge = False
412
        self.merge_by_lineid = False
413
        self.fleet_send_sleep_seconds = None
J
jiaqi 已提交
414

415 416 417 418 419 420
    def set_feed_type(self, data_feed_type):
        """
        Set data_feed_desc
        """
        self.proto_desc.name = data_feed_type

J
jiaqi 已提交
421 422 423 424 425
    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
426
        if self.thread_num <= 0:
427
            self.thread_num = 1
J
jiaqi 已提交
428 429 430 431
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
432 433
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
434 435 436
        self.dataset.set_parse_logkey(self.parse_logkey)
        self.dataset.set_merge_by_sid(self.merge_by_sid)
        self.dataset.set_enable_pv_merge(self.enable_pv_merge)
J
jiaqi 已提交
437 438 439 440
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

441 442
    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
H
hutuxian 已提交
443
            self.dataset.dynamic_adjust_channel_num(thread_num, False)
444 445 446 447
        self.dataset.dynamic_adjust_readers_num(thread_num)

    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
H
hutuxian 已提交
448
            self.dataset.dynamic_adjust_channel_num(self.thread_num, False)
449 450
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

J
jiaqi 已提交
451 452 453 454 455
    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
456
            queue_num(int): dataset output queue num
J
jiaqi 已提交
457 458 459 460 461 462 463 464 465

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
466
        self.is_user_set_queue_num = True
J
jiaqi 已提交
467 468
        self.queue_num = queue_num

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    def set_parse_ins_id(self, parse_ins_id):
        """
        Set id Dataset need to parse insid

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_ins_id(True)

        """
        self.parse_ins_id = parse_ins_id

    def set_parse_content(self, parse_content):
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_content(True)

        """
        self.parse_content = parse_content

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    def set_parse_logkey(self, parse_logkey):
        """
        Set if Dataset need to parse logkey

        Args:
            parse_content(bool): if parse logkey or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_logkey(True)

        """
        self.parse_logkey = parse_logkey

    def set_merge_by_sid(self, merge_by_sid):
        """
        Set if Dataset need to merge sid. If not, one ins means one Pv.

        Args:
            merge_by_sid(bool): if merge sid or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_sid(True)

        """
        self.merge_by_sid = merge_by_sid

    def set_enable_pv_merge(self, enable_pv_merge):
        """
        Set if Dataset need to merge pv.

        Args:
            enable_pv_merge(bool): if enable_pv_merge or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_enable_pv_merge(True)

        """
        self.enable_pv_merge = enable_pv_merge

    def preprocess_instance(self):
        """
        Merge pv instance and convey it from input_channel to input_pv_channel. 
        It will be effective when enable_pv_merge_ is True.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()

        """
        self.dataset.preprocess_instance()

    def set_current_phase(self, current_phase):
        """
        Set current phase in train. It is useful for untest.
        current_phase : 1 for join, 0 for update.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.set_current_phase(1)

        """
        self.dataset.set_current_phase(current_phase)

    def postprocess_instance(self):
        """
        Divide pv instance and convey it to input_channel.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()
              exe.train_from_dataset(dataset)
              dataset.postprocess_instance()

        """
        self.dataset.postprocess_instance()

609
    def set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
J
jiaqi 已提交
610
        """
611
        Set fleet send batch size, default is 1024
J
jiaqi 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
625

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    def set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_sleep_seconds(2)

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

643
    def set_merge_by_lineid(self, merge_size=2):
644 645 646 647 648
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
649
            merge_size(int): ins size to merge. default is 2.
650 651 652 653 654 655 656 657 658

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_lineid()

        """
659
        self.dataset.set_merge_by_lineid(merge_size)
660
        self.merge_by_lineid = True
661
        self.parse_ins_id = True
662

663 664 665 666 667 668 669 670 671 672
    def set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num):
        self.dataset.set_generate_unique_feasigns(generate_uni_feasigns)
        self.gen_uni_feasigns = generate_uni_feasigns
        self.local_shard_num = shard_num

    def generate_local_tables_unlock(self, table_id, fea_dim, read_thread_num,
                                     consume_thread_num, shard_num):
        self.dataset.generate_local_tables_unlock(
            table_id, fea_dim, read_thread_num, consume_thread_num, shard_num)

673
    def load_into_memory(self):
674 675 676
        """
        Load data into memory

677 678 679 680 681 682 683 684
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
685
        """
686
        self._prepare_to_run()
687
        self.dataset.load_into_memory()
D
dongdaxiang 已提交
688

689
    def preload_into_memory(self, thread_num=None):
J
jiaqi 已提交
690 691 692
        """
        Load data into memory in async mode

693 694 695
        Args:
            thread_num(int): preload thread num

J
jiaqi 已提交
696 697 698 699 700 701 702 703 704 705 706
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
707 708 709 710
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
J
jiaqi 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        self.dataset.preload_into_memory()

    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()
728
        self.dataset.destroy_preload_readers()
J
jiaqi 已提交
729

D
dongdaxiang 已提交
730
    def local_shuffle(self):
731 732 733
        """
        Local shuffle

734 735 736 737 738 739 740 741 742
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
743
        """
744
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
745

746
    def global_shuffle(self, fleet=None, thread_num=12):
747 748
        """
        Global shuffle.
749 750 751
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
752

753
        Examples:
754 755 756 757 758 759 760 761 762
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
763 764

        Args:
765
            fleet(Fleet): fleet singleton. Default None.
766
            thread_num(int): shuffle thread num. Default is 12.
767

768
        """
769 770
        trainer_num = 1
        if fleet is not None:
X
xujiaqi01 已提交
771
            fleet._role_maker.barrier_worker()
772
            trainer_num = fleet.worker_num()
773
        if self.fleet_send_batch_size is None:
774 775 776
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
777
        self.dataset.register_client2client_msg_handler()
778
        self.dataset.set_trainer_num(trainer_num)
J
jiaqi 已提交
779
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
780
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
781
        if fleet is not None:
X
xujiaqi01 已提交
782
            fleet._role_maker.barrier_worker()
783
        self.dataset.global_shuffle(thread_num)
784
        if fleet is not None:
X
xujiaqi01 已提交
785
            fleet._role_maker.barrier_worker()
786 787 788
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
X
xujiaqi01 已提交
789
            fleet._role_maker.barrier_worker()
D
dongdaxiang 已提交
790

791 792 793 794
    def release_memory(self):
        """
        Release InMemoryDataset memory data, when data will not be used again.

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

810 811
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
    def get_pv_data_size(self):
        """
        Get memory data size of Pv, user can call this function to know the pv num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Returns:
            The size of memory pv data.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_pv_data_size()

        """
        return self.dataset.get_pv_data_size()

837 838 839 840 841 842 843 844 845 846 847 848 849 850
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

851 852 853 854 855 856 857 858 859 860
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
861 862 863 864 865 866 867

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
868 869
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
            return global_data_size[0]
        return local_data_size[0]

    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

888 889 890 891 892 893 894 895 896 897 898
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
899 900 901 902 903 904 905

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
906 907
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
908 909 910
            return global_data_size[0]
        return local_data_size[0]

X
xjqbest 已提交
911

D
dongdaxiang 已提交
912
class QueueDataset(DatasetBase):
913 914 915
    """
    QueueDataset, it will process data streamly.

916 917 918 919 920 921
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

922
    """
D
dongdaxiang 已提交
923

D
dongdaxiang 已提交
924
    def __init__(self):
925
        """
D
dongdaxiang 已提交
926 927
        Initialize QueueDataset
        This class should be created by DatasetFactory
928
        """
929
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
930
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
931

932 933 934 935 936 937 938 939 940 941 942 943 944 945
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_readers()

X
xujiaqi01 已提交
946
    def local_shuffle(self):
947
        """
948
        Local shuffle data.
D
dongdaxiang 已提交
949

D
dongdaxiang 已提交
950 951
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
952 953 954 955 956 957 958 959

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

960 961 962
        Raises:
            NotImplementedError: QueueDataset does not support local shuffle

963
        """
D
dongdaxiang 已提交
964 965 966
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
967

968
    def global_shuffle(self, fleet=None):
969
        """
970 971
        Global shuffle data.

D
dongdaxiang 已提交
972 973
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
974

975 976 977
        Args:
            fleet(Fleet): fleet singleton. Default None.

978 979 980 981 982 983 984 985
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

986 987 988
        Raises:
            NotImplementedError: QueueDataset does not support global shuffle

989
        """
D
dongdaxiang 已提交
990 991 992
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
993 994 995 996 997


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
998 999 1000 1001 1002 1003

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
H
hutuxian 已提交
1004 1005 1006 1007
    """

    def __init__(self):
        """
1008 1009
        Initialize FileInstantDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1010 1011 1012 1013 1014 1015
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
1016 1017
        Local shuffle
        FileInstantDataset does not support local shuffle
H
hutuxian 已提交
1018 1019 1020 1021 1022 1023 1024 1025
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
1026
        FileInstantDataset does not support global shuffle
H
hutuxian 已提交
1027 1028 1029 1030
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
H
hutuxian 已提交
1041
          dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
H
hutuxian 已提交
1042 1043 1044 1045
    """

    def __init__(self):
        """
1046 1047
        Initialize BoxPSDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1048 1049 1050
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)
1051
        self.proto_desc.name = "PaddleBoxDataFeed"
H
hutuxian 已提交
1052

H
hutuxian 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061
    def set_date(self, date):
        """
        Workaround for date
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        self.boxps.set_date(year, month, day)

H
hutuxian 已提交
1062 1063
    def begin_pass(self):
        """
1064
        Begin Pass
H
hutuxian 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073
        Notify BoxPS to load sparse parameters of next pass to GPU Memory 

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              dataset.begin_pass()
        """
H
hutuxian 已提交
1074 1075
        self.boxps.begin_pass()

1076
    def end_pass(self, need_save_delta):
H
hutuxian 已提交
1077
        """
1078
        End Pass
H
hutuxian 已提交
1079 1080 1081 1082 1083 1084
        Notify BoxPS that current pass ended 
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
1085
              dataset.end_pass(True)
H
hutuxian 已提交
1086
        """
1087
        self.boxps.end_pass(need_save_delta)
H
hutuxian 已提交
1088 1089 1090

    def wait_preload_done(self):
        """
T
tianshuo78520a 已提交
1091
        Wait async preload done
1092
        Wait Until Feed Pass Done
H
hutuxian 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
H
hutuxian 已提交
1103 1104 1105 1106
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
H
hutuxian 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
        Load next pass into memory and notify boxps to fetch its emb from SSD
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
	    """
H
hutuxian 已提交
1117 1118 1119 1120 1121
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
H
hutuxian 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        Begin async preload next pass while current pass may be training
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
        """
H
hutuxian 已提交
1132 1133
        self._prepare_to_run()
        self.boxps.preload_into_memory()
H
hutuxian 已提交
1134 1135 1136 1137 1138

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, True)
        self.dataset.dynamic_adjust_readers_num(thread_num)
1139 1140 1141

    def _dynamic_adjust_after_train(self):
        pass