jit_kernel_blas.cc 14.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
18 19
#include "paddle/fluid/platform/enforce.h"

T
tensor-tang 已提交
20 21 22 23
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif

T
tensor-tang 已提交
24 25 26 27 28 29 30 31
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
32
namespace jit = platform::jit;
T
tensor-tang 已提交
33

T
tensor-tang 已提交
34 35 36 37
template <typename T>
void VMulRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
T
tensor-tang 已提交
38
  }
T
tensor-tang 已提交
39
}
T
tensor-tang 已提交
40

T
tensor-tang 已提交
41 42 43 44 45 46 47
template <typename T>
void VAddRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

T
tensor-tang 已提交
48 49 50 51 52 53 54 55
template <typename T>
void VAddReluRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
    z[i] = z[i] > 0 ? z[i] : 0;
  }
}

T
tensor-tang 已提交
56 57 58 59 60 61 62
template <typename T>
void VScalRefer(const T* a, const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = a[0] * x[i];
  }
}

T
tensor-tang 已提交
63 64 65 66 67 68 69
template <typename T>
void VAddBiasRefer(const T* a, const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = a[0] + x[i];
  }
}

T
tensor-tang 已提交
70 71 72 73 74 75 76 77
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);

template <>
void VMulMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsMul(n, x, y, z);
}
T
tensor-tang 已提交
78

T
tensor-tang 已提交
79 80 81 82
template <>
void VMulMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdMul(n, x, y, z);
}
T
tensor-tang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95

template <typename T>
void VAddMKL(const T* x, const T* y, T* z, int n);

template <>
void VAddMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsAdd(n, x, y, z);
}

template <>
void VAddMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdAdd(n, x, y, z);
}
T
tensor-tang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

template <typename T>
void VScalMKL(const T* a, const T* x, T* y, int n);

template <>
void VScalMKL<float>(const float* a, const float* x, float* y, int n) {
  if (x == y) {
    platform::dynload::cblas_sscal(n, *a, y, 1);
  } else {
    VScalRefer<float>(a, x, y, n);
  }
}

template <>
void VScalMKL<double>(const double* a, const double* x, double* y, int n) {
  if (x == y) {
    platform::dynload::cblas_dscal(n, *a, y, 1);
  } else {
    VScalRefer<double>(a, x, y, n);
  }
}

T
tensor-tang 已提交
118 119
#endif

T
tensor-tang 已提交
120 121 122 123 124 125 126
#define DECLARE_STATIC_FUNC                                 \
  static inline std::string name(int d) {                   \
    PADDLE_THROW("DType should be either float or double"); \
  }                                                         \
  static inline bool useJIT(int d) { return false; }        \
  static inline bool useMKL(int d) { return false; }

127
/* VMUL JitKernel */
T
tensor-tang 已提交
128 129 130
template <typename T>
class VMulKernelImpl : public VMulKernel<T> {
 public:
T
tensor-tang 已提交
131
  DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
132
  explicit VMulKernelImpl(int d) : VMulKernel<T>() {
T
tensor-tang 已提交
133
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
134
    if (useJIT(d)) {
T
tensor-tang 已提交
135 136
      // roughly estimate the size of code
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
137
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::mul, 0, false,
T
tensor-tang 已提交
138
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
139 140 141 142
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
143
#endif
T
tensor-tang 已提交
144 145 146 147 148
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VMulMKL<T>;
      return;
    }
T
tensor-tang 已提交
149
#endif
T
tensor-tang 已提交
150 151 152
    this->Compute = VMulRefer<T>;
  }

T
tensor-tang 已提交
153 154
#ifdef PADDLE_WITH_XBYAK

T
tensor-tang 已提交
155
 private:
T
tensor-tang 已提交
156
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
157
#endif
T
tensor-tang 已提交
158 159
};

T
tensor-tang 已提交
160
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
161 162
template <>
bool VMulKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
163
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
164
}
T
tensor-tang 已提交
165
#endif
T
tensor-tang 已提交
166

T
tensor-tang 已提交
167
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
168 169 170 171 172 173 174 175 176
template <>
bool VMulKernelImpl<float>::useMKL(int d) {
  return jit::MayIUse(jit::avx512f) && d > 512;
}

template <>
bool VMulKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
177
#endif
T
tensor-tang 已提交
178

T
tensor-tang 已提交
179 180
/* VAdd JitKernel */
template <typename T>
T
tensor-tang 已提交
181 182
class VAddKernelImpl : public VAddKernel<T> {
 public:
T
tensor-tang 已提交
183 184
  DECLARE_STATIC_FUNC;
  explicit VAddKernelImpl(int d) : VAddKernel<T>() {
T
tensor-tang 已提交
185
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
186 187
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
188
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 0, false,
T
tensor-tang 已提交
189
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
190 191 192
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
193
    }
T
tensor-tang 已提交
194
#endif
T
tensor-tang 已提交
195 196 197 198 199 200 201
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VAddMKL<T>;
      return;
    }
#endif
    this->Compute = VAddRefer<T>;
T
tensor-tang 已提交
202
  }
T
fix mac  
tensor-tang 已提交
203
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
204 205

 private:
T
tensor-tang 已提交
206
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
fix mac  
tensor-tang 已提交
207
#endif
T
tensor-tang 已提交
208
};
T
tensor-tang 已提交
209

T
tensor-tang 已提交
210
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
211 212
template <>
bool VAddKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
213
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
214
}
T
tensor-tang 已提交
215
#endif
T
tensor-tang 已提交
216

T
tensor-tang 已提交
217
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
218 219 220 221
template <>
bool VAddKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
T
tensor-tang 已提交
222

T
tensor-tang 已提交
223 224 225 226
template <>
bool VAddKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
227
#endif
T
tensor-tang 已提交
228

T
tensor-tang 已提交
229 230 231 232 233 234
/* VAddRelu JitKernel */
template <typename T>
class VAddReluKernelImpl : public VAddReluKernel<T> {
 public:
  DECLARE_STATIC_FUNC;
  explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() {
T
tensor-tang 已提交
235
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
236 237
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
238
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 0, true,
T
tensor-tang 已提交
239
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
240 241 242 243
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
244
#endif
T
tensor-tang 已提交
245 246
    this->Compute = VAddReluRefer<T>;
  }
T
fix mac  
tensor-tang 已提交
247
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
248 249

 private:
T
tensor-tang 已提交
250
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
fix mac  
tensor-tang 已提交
251
#endif
T
tensor-tang 已提交
252 253
};

T
tensor-tang 已提交
254
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
255 256
template <>
bool VAddReluKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
257
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
258
}
T
tensor-tang 已提交
259
#endif
T
tensor-tang 已提交
260

T
tensor-tang 已提交
261 262
/* VScal JitKernel */
template <typename T>
T
tensor-tang 已提交
263 264
class VScalKernelImpl : public VScalKernel<T> {
 public:
T
tensor-tang 已提交
265 266 267 268 269
  DECLARE_STATIC_FUNC;
  explicit VScalKernelImpl(int d) : VScalKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
270 271
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::mul, 1, false,
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
272 273 274
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
275
    }
T
tensor-tang 已提交
276
#endif
T
tensor-tang 已提交
277
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
278 279 280 281
    if (useMKL(d)) {
      this->Compute = VScalMKL<T>;
      return;
    }
T
tensor-tang 已提交
282
#endif
T
tensor-tang 已提交
283
    this->Compute = VScalRefer<T>;
T
tensor-tang 已提交
284
  }
T
tensor-tang 已提交
285
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
286

T
tensor-tang 已提交
287
 private:
T
tensor-tang 已提交
288
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
289
#endif
T
tensor-tang 已提交
290 291 292 293 294
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VScalKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
295
  return gen::VXXJitCode::init(d, 1);
T
tensor-tang 已提交
296
}
T
tensor-tang 已提交
297
#endif
T
tensor-tang 已提交
298 299 300 301 302 303 304 305 306 307

#ifdef PADDLE_WITH_MKLML
template <>
bool VScalKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
template <>
bool VScalKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
308 309
#endif

T
tensor-tang 已提交
310
/* VAddBias JitKernel */
T
tensor-tang 已提交
311
template <typename T>
T
tensor-tang 已提交
312 313
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
 public:
T
tensor-tang 已提交
314 315 316 317 318 319 320 321 322 323
  DECLARE_STATIC_FUNC;
  explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 1, false,
                                         sz > 4096 ? sz : 4096));
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
324
    }
T
tensor-tang 已提交
325
#endif
T
tensor-tang 已提交
326

T
tensor-tang 已提交
327
    this->Compute = VAddBiasRefer<T>;
T
tensor-tang 已提交
328
  }
T
tensor-tang 已提交
329
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
330

T
tensor-tang 已提交
331 332
 private:
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
333
#endif
T
tensor-tang 已提交
334 335 336 337 338 339 340
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VAddBiasKernelImpl<float>::useJIT(int d) {
  return gen::VXXJitCode::init(d, 1);
}
T
tensor-tang 已提交
341 342
#endif

T
tensor-tang 已提交
343 344 345 346 347 348 349
#undef DECLARE_STATIC_FUNC

REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
REGISTER_JITKERNEL(vaddrelu, VAddReluKernel);
REGISTER_JITKERNEL(vscal, VScalKernel);
REGISTER_JITKERNEL(vaddbias, VAddBiasKernel);
T
tensor-tang 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

/* VRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VReluKernelImpl : public VReluKernel<T> {
 public:
  explicit VReluKernelImpl(int d) : VReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
      y[i] = x[i] > 0 ? x[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());                          \
    _mm256_storeu_ps(y, tmp);                                               \
  }

#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                       \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
  }

#define INTRI_GT8LT16_FLOAT(isa)                                        \
  template <>                                                           \
  VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d)         \
      : VReluKernel<float>() {                                          \
    this->num_ = d;                                                     \
    this->end_ = AVX_FLOAT_BLOCK;                                       \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                  \
  }                                                                     \
  template <>                                                           \
  void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 zeros = _mm256_setzero_ps();                                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + this->rest_);                     \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                  \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                  \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + this->rest_, tmp1);                            \
  }

#define INTRI_GT16_FLOAT(isa)                                                \
  template <>                                                                \
  VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d)                 \
      : VReluKernel<float>() {                                               \
    this->num_ = d;                                                          \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                                    \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                       \
  }                                                                          \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
      tmp = _mm256_max_ps(tmp, zeros);                                       \
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    __m256 tmp = _mm256_loadu_ps(x + this->rest_);                           \
    tmp = _mm256_max_ps(tmp, zeros);                                         \
    _mm256_storeu_ps(y + this->rest_, tmp);                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_GT8LT16_FLOAT(jit::avx2);
INTRI_GT16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_GT8LT16_FLOAT(jit::avx512f);
INTRI_GT16_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
447 448 449 450 451
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT

T
tensor-tang 已提交
452 453 454 455 456 457 458 459
/* An empty JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VIdentityKernelImpl : public VIdentityKernel<T> {
 public:
  explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {}
};

T
tensor-tang 已提交
460 461
REGISTER_JITKERNEL_DEPRECATED(vrelu, VReluKernel);
REGISTER_JITKERNEL_DEPRECATED(videntity, VIdentityKernel);
T
tensor-tang 已提交
462 463 464 465 466

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle