jit_kernel_blas.cc 15.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
18 19
#include "paddle/fluid/platform/enforce.h"

T
tensor-tang 已提交
20 21 22 23
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif

T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33 34 35
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
36
namespace jit = platform::jit;
T
tensor-tang 已提交
37

T
tensor-tang 已提交
38 39 40 41
template <typename T>
void VMulRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
T
tensor-tang 已提交
42
  }
T
tensor-tang 已提交
43
}
T
tensor-tang 已提交
44

T
tensor-tang 已提交
45 46 47 48 49 50 51
template <typename T>
void VAddRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

T
tensor-tang 已提交
52 53 54 55 56 57 58 59
template <typename T>
void VAddReluRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
    z[i] = z[i] > 0 ? z[i] : 0;
  }
}

T
tensor-tang 已提交
60 61 62 63 64 65 66 67
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);

template <>
void VMulMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsMul(n, x, y, z);
}
T
tensor-tang 已提交
68

T
tensor-tang 已提交
69 70 71 72
template <>
void VMulMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdMul(n, x, y, z);
}
T
tensor-tang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85

template <typename T>
void VAddMKL(const T* x, const T* y, T* z, int n);

template <>
void VAddMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsAdd(n, x, y, z);
}

template <>
void VAddMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdAdd(n, x, y, z);
}
T
tensor-tang 已提交
86 87
#endif

T
tensor-tang 已提交
88 89 90 91 92 93 94
#define DECLARE_STATIC_FUNC                                 \
  static inline std::string name(int d) {                   \
    PADDLE_THROW("DType should be either float or double"); \
  }                                                         \
  static inline bool useJIT(int d) { return false; }        \
  static inline bool useMKL(int d) { return false; }

95
/* VMUL JitKernel */
T
tensor-tang 已提交
96 97 98
template <typename T>
class VMulKernelImpl : public VMulKernel<T> {
 public:
T
tensor-tang 已提交
99
  DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
100
  explicit VMulKernelImpl(int d) : VMulKernel<T>() {
T
tensor-tang 已提交
101
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
102
    if (useJIT(d)) {
T
tensor-tang 已提交
103 104
      // roughly estimate the size of code
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
105 106
      jitcode_.reset(new gen::VVVJitCode(d, gen::operand_type::mul, false,
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
107 108 109 110
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
111
#endif
T
tensor-tang 已提交
112 113 114 115 116
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VMulMKL<T>;
      return;
    }
T
tensor-tang 已提交
117
#endif
T
tensor-tang 已提交
118 119 120
    this->Compute = VMulRefer<T>;
  }

T
tensor-tang 已提交
121 122
#ifdef PADDLE_WITH_XBYAK

T
tensor-tang 已提交
123
 private:
T
tensor-tang 已提交
124
  std::unique_ptr<gen::VVVJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
125
#endif
T
tensor-tang 已提交
126 127
};

T
tensor-tang 已提交
128
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
129 130
template <>
bool VMulKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
131
  return gen::VVVJitCode::init(d);
T
tensor-tang 已提交
132
}
T
tensor-tang 已提交
133
#endif
T
tensor-tang 已提交
134

T
tensor-tang 已提交
135
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
136 137 138 139 140 141 142 143 144
template <>
bool VMulKernelImpl<float>::useMKL(int d) {
  return jit::MayIUse(jit::avx512f) && d > 512;
}

template <>
bool VMulKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
145
#endif
T
tensor-tang 已提交
146

T
tensor-tang 已提交
147 148
/* VAdd JitKernel */
template <typename T>
T
tensor-tang 已提交
149 150
class VAddKernelImpl : public VAddKernel<T> {
 public:
T
tensor-tang 已提交
151 152
  DECLARE_STATIC_FUNC;
  explicit VAddKernelImpl(int d) : VAddKernel<T>() {
T
tensor-tang 已提交
153
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
154 155
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
156 157
      jitcode_.reset(new gen::VVVJitCode(d, gen::operand_type::add, false,
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
158 159 160
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
161
    }
T
tensor-tang 已提交
162
#endif
T
tensor-tang 已提交
163 164 165 166 167 168 169
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VAddMKL<T>;
      return;
    }
#endif
    this->Compute = VAddRefer<T>;
T
tensor-tang 已提交
170
  }
T
tensor-tang 已提交
171 172

 private:
T
tensor-tang 已提交
173
  std::unique_ptr<gen::VVVJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
174
};
T
tensor-tang 已提交
175

T
tensor-tang 已提交
176
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
177 178
template <>
bool VAddKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
179
  return gen::VVVJitCode::init(d);
T
tensor-tang 已提交
180
}
T
tensor-tang 已提交
181
#endif
T
tensor-tang 已提交
182

T
tensor-tang 已提交
183
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
184 185 186 187
template <>
bool VAddKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
T
tensor-tang 已提交
188

T
tensor-tang 已提交
189 190 191 192
template <>
bool VAddKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
193
#endif
T
tensor-tang 已提交
194

T
tensor-tang 已提交
195 196 197 198 199 200
/* VAddRelu JitKernel */
template <typename T>
class VAddReluKernelImpl : public VAddReluKernel<T> {
 public:
  DECLARE_STATIC_FUNC;
  explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() {
T
tensor-tang 已提交
201
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
202 203
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
204 205
      jitcode_.reset(new gen::VVVJitCode(d, gen::operand_type::add, true,
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
206 207 208 209
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
210
#endif
T
tensor-tang 已提交
211 212 213 214
    this->Compute = VAddReluRefer<T>;
  }

 private:
T
tensor-tang 已提交
215
  std::unique_ptr<gen::VVVJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
216 217
};

T
tensor-tang 已提交
218
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
219 220
template <>
bool VAddReluKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
221
  return gen::VVVJitCode::init(d);
T
tensor-tang 已提交
222
}
T
tensor-tang 已提交
223
#endif
T
tensor-tang 已提交
224

T
tensor-tang 已提交
225
#undef DECLARE_STATIC_FUNC
T
tensor-tang 已提交
226

T
tensor-tang 已提交
227 228
REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
T
tensor-tang 已提交
229
REGISTER_JITKERNEL(vaddrelu, VAddReluKernel);
T
tensor-tang 已提交
230

T
tensor-tang 已提交
231 232 233 234
/* VSCAL JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VScalKernelImpl : public VScalKernel<T> {
 public:
T
tensor-tang 已提交
235 236 237
  explicit VScalKernelImpl(int d) : VScalKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
238 239 240
      y[i] = a * x[i];
    }
  }
T
tensor-tang 已提交
241 242
  void Compute(const T a, T* x) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
243 244 245 246 247 248
      x[i] = a * x[i];
    }
  }
};

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
249 250 251 252 253
#define MKL_FLOAT(isa, block)                                               \
  template <>                                                               \
  void VScalKernelImpl<float, isa, block>::Compute(const float a, float* x) \
      const {                                                               \
    platform::dynload::cblas_sscal(this->num_, a, x, 1);                    \
T
tensor-tang 已提交
254 255
  }

T
tensor-tang 已提交
256 257 258 259 260
#define MKL_DOUBLE(isa, block)                                                 \
  template <>                                                                  \
  void VScalKernelImpl<double, isa, block>::Compute(const double a, double* x) \
      const {                                                                  \
    platform::dynload::cblas_dscal(this->num_, a, x, 1);                       \
T
tensor-tang 已提交
261 262
  }

T
tensor-tang 已提交
263 264
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
265 266
#endif

T
tensor-tang 已提交
267 268 269 270 271 272 273 274 275
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(     \
      const float a, const float* x, float* y) const { \
    __m256 tmp;                                        \
    __m256 scalar = _mm256_set1_ps(a);                 \
    tmp = _mm256_loadu_ps(x);                          \
    tmp = _mm256_mul_ps(tmp, scalar);                  \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
276
  }
T
tensor-tang 已提交
277 278 279 280 281 282 283 284 285
#define INTRI8_INPLACE_FLOAT(isa)                                          \
  template <>                                                              \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(const float a, float* x) \
      const {                                                              \
    __m256 tmp;                                                            \
    __m256 scalar = _mm256_set1_ps(a);                                     \
    tmp = _mm256_loadu_ps(x);                                              \
    tmp = _mm256_mul_ps(tmp, scalar);                                      \
    _mm256_storeu_ps(x, tmp);                                              \
T
tensor-tang 已提交
286 287 288
  }

#ifdef __AVX__
T
tensor-tang 已提交
289 290
INTRI8_FLOAT(jit::avx);
INTRI8_INPLACE_FLOAT(jit::avx);
T
tensor-tang 已提交
291 292
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
293 294
INTRI8_FLOAT(jit::avx2);
INTRI8_INPLACE_FLOAT(jit::avx2);
T
tensor-tang 已提交
295 296
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
297 298
INTRI8_FLOAT(jit::avx512f);
INTRI8_INPLACE_FLOAT(jit::avx512f);
T
tensor-tang 已提交
299 300 301
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
302 303 304 305
#undef INTRI8_FLOAT
#undef INTRI8_INPLACE_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
306

T
tensor-tang 已提交
307 308 309 310
/* VAddBias JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
 public:
T
tensor-tang 已提交
311 312 313
  explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
314 315 316 317 318
      y[i] = x[i] + a;
    }
  }
};

T
tensor-tang 已提交
319 320 321 322 323 324 325
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ8>::Compute(  \
      const float a, const float* x, float* y) const { \
    __m256 tmp = _mm256_loadu_ps(x);                   \
    tmp = _mm256_add_ps(tmp, _mm256_set1_ps(a));       \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
326 327
  }

T
tensor-tang 已提交
328 329 330 331 332 333 334 335 336 337
#define INTRI16_FLOAT(isa)                             \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ16>::Compute( \
      const float a, const float* x, float* y) const { \
    __m256 tmp0 = _mm256_loadu_ps(x);                  \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);              \
    tmp0 = _mm256_add_ps(tmp0, _mm256_set1_ps(a));     \
    tmp1 = _mm256_add_ps(tmp1, _mm256_set1_ps(a));     \
    _mm256_storeu_ps(y, tmp0);                         \
    _mm256_storeu_ps(y + 8, tmp1);                     \
T
tensor-tang 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT

/* VRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VReluKernelImpl : public VReluKernel<T> {
 public:
  explicit VReluKernelImpl(int d) : VReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
      y[i] = x[i] > 0 ? x[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());                          \
    _mm256_storeu_ps(y, tmp);                                               \
  }

#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                       \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
  }

#define INTRI_GT8LT16_FLOAT(isa)                                        \
  template <>                                                           \
  VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d)         \
      : VReluKernel<float>() {                                          \
    this->num_ = d;                                                     \
    this->end_ = AVX_FLOAT_BLOCK;                                       \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                  \
  }                                                                     \
  template <>                                                           \
  void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 zeros = _mm256_setzero_ps();                                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + this->rest_);                     \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                  \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                  \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + this->rest_, tmp1);                            \
  }

#define INTRI_GT16_FLOAT(isa)                                                \
  template <>                                                                \
  VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d)                 \
      : VReluKernel<float>() {                                               \
    this->num_ = d;                                                          \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                                    \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                       \
  }                                                                          \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
      tmp = _mm256_max_ps(tmp, zeros);                                       \
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    __m256 tmp = _mm256_loadu_ps(x + this->rest_);                           \
    tmp = _mm256_max_ps(tmp, zeros);                                         \
    _mm256_storeu_ps(y + this->rest_, tmp);                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_GT8LT16_FLOAT(jit::avx2);
INTRI_GT16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_GT8LT16_FLOAT(jit::avx512f);
INTRI_GT16_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
453 454 455 456 457
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT

T
tensor-tang 已提交
458 459 460 461 462 463 464 465
/* An empty JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VIdentityKernelImpl : public VIdentityKernel<T> {
 public:
  explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {}
};

T
tensor-tang 已提交
466 467 468 469
REGISTER_JITKERNEL_DEPRECATED(vscal, VScalKernel);
REGISTER_JITKERNEL_DEPRECATED(vaddb, VAddBiasKernel);
REGISTER_JITKERNEL_DEPRECATED(vrelu, VReluKernel);
REGISTER_JITKERNEL_DEPRECATED(videntity, VIdentityKernel);
T
tensor-tang 已提交
470 471 472 473 474

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle