downpour_worker.cc 34.9 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17
#include "paddle/fluid/platform/cpu_helper.h"
18
#include "paddle/fluid/string/string_helper.h"
19

20 21 22 23 24
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

25 26 27
namespace paddle {
namespace framework {

28
void DownpourWorker::Initialize(const TrainerDesc& desc) {
29
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
30
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
31 32 33 34
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
35
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
36 37 38
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
39
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
40 41 42
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
43
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
44 45
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
46
    label_var_name_[table_id] = table.label_var_name();
47
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
48 49
  }

D
dongdaxiang 已提交
50
  for (int i = 0; i < param_.dense_table_size(); ++i) {
51 52 53
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
54
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
55 56 57
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
58
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
59 60 61 62 63
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
64
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
65 66
    skip_ops_[i] = param_.skip_ops(i);
  }
67

68 69 70 71
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

72 73 74
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

75
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
76
  fetch_config_ = desc.fetch_config();
77
  use_cvm_ = desc.use_cvm();
78
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
79
  dump_slot_ = desc.dump_slot();
80 81 82 83
  dump_fields_.resize(desc.dump_fields_size());
  for (int i = 0; i < desc.dump_fields_size(); ++i) {
    dump_fields_[i] = desc.dump_fields(i);
  }
84
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
85 86 87
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
111 112
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
void DownpourWorker::SetChannelWriter(ChannelObject<std::string>* queue) {
  writer_.Reset(queue);
}

void DownpourWorker::SetNeedDump(bool need_dump_field) {
  need_dump_field_ = need_dump_field;
}

template <typename T>
std::string PrintLodTensorType(LoDTensor* tensor, int64_t start, int64_t end) {
  auto count = tensor->numel();
  if (start < 0 || end > count) {
    VLOG(3) << "access violation";
    return "access violation";
  }
  std::ostringstream os;
  for (int64_t i = start; i < end; i++) {
    os << ":" << tensor->data<T>()[i];
  }
  return os.str();
}

std::string PrintLodTensorIntType(LoDTensor* tensor, int64_t start,
                                  int64_t end) {
  auto count = tensor->numel();
  if (start < 0 || end > count) {
    VLOG(3) << "access violation";
    return "access violation";
  }
  std::ostringstream os;
  for (int64_t i = start; i < end; i++) {
    os << ":" << static_cast<uint64_t>(tensor->data<int64_t>()[i]);
  }
  return os.str();
}

std::string PrintLodTensor(LoDTensor* tensor, int64_t start, int64_t end) {
  std::string out_val;
  if (tensor->type() == proto::VarType::FP32) {
    out_val = PrintLodTensorType<float>(tensor, start, end);
  } else if (tensor->type() == proto::VarType::INT64) {
    out_val = PrintLodTensorIntType(tensor, start, end);
  } else if (tensor->type() == proto::VarType::FP64) {
    out_val = PrintLodTensorType<double>(tensor, start, end);
  } else {
    out_val = "unsupported type";
  }
  return out_val;
}

std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index) {
  auto& dims = tensor->dims();
  if (tensor->lod().size() != 0) {
    auto& lod = tensor->lod()[0];
    return {lod[index] * dims[1], lod[index + 1] * dims[1]};
  } else {
    return {index * dims[1], (index + 1) * dims[1]};
  }
}

bool CheckValidOutput(LoDTensor* tensor, int batch_size) {
  auto& dims = tensor->dims();
  if (dims.size() != 2) return false;
  if (tensor->lod().size() != 0) {
    auto& lod = tensor->lod()[0];
    if (lod.size() != batch_size + 1) {
      return false;
    }
  } else {
    if (dims[0] != batch_size) {
      return false;
    }
  }
  return true;
}

189
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
H
heqiaozhi 已提交
190
  uint64_t table_id = static_cast<uint64_t>(
191
      param_.program_config(0).pull_sparse_table_id(table_idx));
192

H
heqiaozhi 已提交
193 194 195 196 197 198 199
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
200 201 202
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
203
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
204 205 206
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
207
  size_t global_index = 0;
208
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
209 210
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
211
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
212 213 214
    if (fea_var == nullptr) {
      continue;
    }
215
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
216 217
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
218 219 220 221 222 223 224 225

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

226
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
227
    size_t fea_idx = 0;
228
    // tensor->lod()[0].size() == batch_size + 1
229 230
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
231 232 233 234
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
235 236
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
237 238 239 240 241 242 243 244
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
245
  uint64_t table_id = static_cast<uint64_t>(
246
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
247 248 249 250 251 252 253 254

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
255 256 257 258

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
259
  std::vector<float> init_value(table.fea_dim());
260 261 262 263
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
264 265 266
    if (var == nullptr) {
      continue;
    }
267
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
268
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
269 270 271
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
272 273 274
    if (var_emb == nullptr) {
      continue;
    }
275 276 277 278 279 280 281
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
282 283 284 285 286 287 288 289

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
290
    for (int index = 0; index < len; ++index) {
291 292 293 294
      if (use_cvm_) {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
295 296 297 298
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
299 300 301 302
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
303 304 305 306
        if (is_nid && index == tensor->lod()[0][nid_ins_index]) {
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
307 308 309 310 311
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
312 313 314 315
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
316 317 318
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
319
               sizeof(float) * table.emb_dim());
320 321 322 323
        if (is_nid && index == tensor->lod()[0][nid_ins_index]) {
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
324
        fea_idx++;
325 326 327 328 329
      }
    }
  }
}

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
  CHECK(len == nid_show_.size()) << "ins_weight size should be equal to "
                                 << "nid_show size, " << len << " vs "
                                 << nid_show_.size();
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
  for (int i = 0; i < len; ++i) {
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
      ins_weight = log(M_E +
                       (nid_adjw_threshold - nid_show) / nid_adjw_threshold *
                           nid_adjw_ratio);
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
void DownpourWorker::CopySparseTable() {
  for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
    int64_t src_table = copy_sparse_tables_[i].first;
    int64_t dest_table = copy_sparse_tables_[i].second;
    int32_t feanum = 0;
    if (src_table == dest_table) {
      continue;
    } else if (!copy_table_config_.sparse_copy_by_feasign()) {
      if (feasign_set_.find(src_table) == feasign_set_.end()) {
        continue;
      } else if (feasign_set_[src_table].size() == 0) {
        continue;
      }
      feanum = fleet_ptr_->CopyTable(src_table, dest_table);
    } else {
      std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
                                    feasign_set_[src_table].end());
      feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
      fea_vec.clear();
      std::vector<uint64_t>().swap(fea_vec);
    }
    VLOG(3) << "copy feasign from table " << src_table << " to table "
            << dest_table << ", feasign num=" << feanum;
    feasign_set_[src_table].clear();
    std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
  }
  feasign_set_.clear();
}

void DownpourWorker::CopyDenseTable() {
  if (thread_id_ != 0) {
    return;
  }
  thread_local std::vector<std::future<int32_t>> pull_dense_status;
  for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
    uint64_t src_table = copy_dense_tables_[i].first;
    uint64_t dest_table = copy_dense_tables_[i].second;
    if (src_table == dest_table) {
      continue;
    }
    int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
    VLOG(3) << "copy param from table " << src_table << " to table "
            << dest_table << ", dim=" << dim;
    if (copy_table_config_.dense_pull_after_copy()) {
      VLOG(3) << "dense pull after copy, table=" << dest_table;
      pull_dense_status.resize(0);
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, dest_table,
                                     dense_value_names_[dest_table],
                                     &pull_dense_status);
      for (auto& t : pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
          LOG(WARNING) << "pull dense after copy table failed,"
                       << " table=" << dest_table;
        }
      }
    }
  }
}

void DownpourWorker::CopyDenseVars() {
  if (thread_id_ != 0) {
    return;
  }
  for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
    auto& src_var_name = copy_table_config_.src_var_list(i);
    auto& dest_var_name = copy_table_config_.dest_var_list(i);
    if (src_var_name == dest_var_name) {
      continue;
    }
    VLOG(3) << "copy dense var from " << src_var_name << " to "
            << dest_var_name;
    Variable* src_var = thread_scope_->FindVar(src_var_name);
    CHECK(src_var != nullptr) << src_var_name << " not found";  // NOLINT
    LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
    CHECK(src_tensor != nullptr) << src_var_name
                                 << " tensor is null";  // NOLINT
    float* src_data = src_tensor->data<float>();

    Variable* dest_var = thread_scope_->FindVar(dest_var_name);
    CHECK(dest_var != nullptr) << dest_var_name << " not found";  // NOLINT
    LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
    CHECK(dest_tensor != nullptr) << dest_var_name
                                  << " tensor is null";  // NOLINT
    float* dest_data = dest_tensor->data<float>();

    CHECK(src_tensor->numel() == dest_tensor->numel())
        << "tensor numel not equal," << src_tensor->numel() << " vs "
        << dest_tensor->numel();
    for (int i = 0; i < src_tensor->numel(); i++) {
      dest_data[i] = src_data[i];
    }
  }
}

502 503 504
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
530
  double adjust_ins_weight_time = 0.0;
531 532 533 534
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
535
  double copy_table_time = 0.0;
536 537
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
538
  uint64_t total_inst = 0;
539 540 541 542 543
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

    timeline.Start();
    if (copy_table_config_.need_copy()) {
      VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
    timeline.Pause();
    copy_table_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

565
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
566
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
567 568 569 570
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
571 572 573
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
574 575 576 577
          break;
        }
      }
      timeline.Start();
578 579 580
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
581 582
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
583
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
584
      timeline.Start();
585 586 587
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
588
      total_time += timeline.ElapsedSec();
589 590 591 592
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
593
      total_time += timeline.ElapsedSec();
594 595 596 597 598 599 600 601 602 603
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
604 605 606 607 608 609 610 611 612 613 614 615 616 617
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
618
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
619
        op->Run(*thread_scope_, place_);
620
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
621 622 623 624 625 626
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

643
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
644 645
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
646 647 648 649 650 651 652 653
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
654
        }
655 656 657 658
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
659
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
660
            dump_slot_, &sparse_push_keys_[tid]);
661 662 663
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
664
      }
665 666 667
    }

    if (need_to_push_dense_) {
668
      timeline.Start();
D
dongdaxiang 已提交
669 670
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
671 672 673
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
674 675
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
676
      }
677
      timeline.Pause();
678
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
679
      total_time += timeline.ElapsedSec();
680 681 682 683 684 685 686 687 688
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
689 690
      }

691 692
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
693 694 695
      }
    }

696
    if (need_to_push_sparse_) {
697 698 699
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
700 701 702 703 704 705
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
706

707 708 709
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
710

711 712 713
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
714 715 716
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
717 718
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
719 720 721 722
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
723 724
    }

D
dongdaxiang 已提交
725
    PrintFetchVars();
726
    thread_scope_->DropKids();
D
dongdaxiang 已提交
727
    total_inst += cur_batch;
728 729 730 731 732
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
733 734
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
735 736 737
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
738 739 740 741 742 743 744 745 746
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
747
        }
748 749 750 751 752 753 754 755 756 757 758
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
759 760
        fprintf(stderr, "adjust ins weight time: %fs\n",
                adjust_ins_weight_time / batch_cnt);
761
        fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
762 763
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
764
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
D
dongdaxiang 已提交
765 766
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
767 768
        fprintf(stderr, "adjust ins weight time percent: %f\n",
                adjust_ins_weight_time / total_time * 100);
769 770
        fprintf(stderr, "copy table time percent: %f\n",
                copy_table_time / total_time * 100);
D
dongdaxiang 已提交
771 772 773 774 775 776 777 778
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
779
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
780 781
      }
    }
D
dongdaxiang 已提交
782
    timeline.Start();
783
  }
784 785 786 787 788
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
789 790
}

791
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
792
  VLOG(3) << "Begin to train files";
793
  platform::SetNumThreads(1);
794
  device_reader_->Start();
795 796
  int batch_cnt = 0;
  int cur_batch;
797
  while ((cur_batch = device_reader_->Next()) > 0) {
798 799 800 801 802 803 804 805 806 807 808 809 810 811
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
812
    // pull sparse here
D
dongdaxiang 已提交
813
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
814 815 816 817
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
818 819 820
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
821 822 823
          break;
        }
      }
824 825 826
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
827 828
      CollectLabelInfo(i);
      FillSparseValue(i);
829 830 831 832 833 834
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
835
    }
D
dongdaxiang 已提交
836
    VLOG(3) << "fill sparse value for all sparse table done.";
837 838 839

    // do computation here
    for (auto& op : ops_) {
840 841 842 843 844 845 846 847 848 849
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
850 851
    }

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

868 869
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
870 871
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
872 873 874 875 876 877 878 879
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
880
        }
881 882 883
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
884
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
885
            dump_slot_, &sparse_push_keys_[tid]);
H
heqiaozhi 已提交
886
      }
887 888
    }

889
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
890 891
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
892 893 894
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
895 896
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
897 898
      }
      VLOG(3) << "push dense gradient done.";
899

900 901 902 903 904
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
905

906 907 908 909 910
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
911 912
      }

913 914 915
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
916 917
    }

918 919 920 921 922 923 924 925 926 927
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
928 929
      }

930 931 932
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
933 934
    }

935
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
936 937
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
938 939 940 941
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
942
    }
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
    if (need_dump_field_) {
      int batch_size = device_reader_->GetCurBatchSize();
      std::vector<std::string> ars(batch_size);
      for (auto& ar : ars) {
        ar.clear();
      }
      auto& ins_id_vec = device_reader_->GetInsIdVec();
      auto& ins_content_vec = device_reader_->GetInsContentVec();
      for (size_t i = 0; i < ins_id_vec.size(); i++) {
        ars[i] += ins_id_vec[i];
        ars[i] = ars[i] + "\t" + ins_content_vec[i];
      }
      for (auto& field : dump_fields_) {
        Variable* var = thread_scope_->FindVar(field);
        if (var == nullptr) {
          continue;
        }
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        if (!CheckValidOutput(tensor, batch_size)) {
          continue;
        }
        for (int i = 0; i < batch_size; ++i) {
          auto output_dim = tensor->dims()[1];
          std::string output_dimstr =
              boost::lexical_cast<std::string>(output_dim);
          ars[i] = ars[i] + "\t" + field + ":" + output_dimstr;
          auto bound = GetTensorBound(tensor, i);
          ars[i] += PrintLodTensor(tensor, bound.first, bound.second);
        }
      }
      // #pragma omp parallel for
      for (size_t i = 0; i < ars.size(); i++) {
        if (ars[i].length() == 0) {
          continue;
        }
        writer_ << ars[i];
      }
    }
981

D
dongdaxiang 已提交
982
    PrintFetchVars();
983 984 985
    thread_scope_->DropKids();
    ++batch_cnt;
  }
986 987 988
  if (need_dump_field_) {
    writer_.Flush();
  }
989 990 991 992 993
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
994 995 996 997
}

}  // end namespace framework
}  // end namespace paddle