mul_op.cc 11.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include <memory>
16
#include <string>
17
#include <unordered_map>
18
#include <vector>
19

20
#include "paddle/fluid/framework/op_registry.h"
P
Physher 已提交
21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
24

C
Chen Weihang 已提交
25 26 27 28
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
29 30 31
namespace paddle {
namespace operators {

32
using framework::OpKernelType;
D
dongzhihong 已提交
33 34
using framework::Tensor;

35 36 37
constexpr int kMULMKLDNNINT8 = 1;
constexpr int kMULMKLDNNFP32 = 2;

38
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
39
 public:
40 41
  using framework::OperatorWithKernel::OperatorWithKernel;

P
Physher 已提交
42 43 44 45 46 47
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
48
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
P
Physher 已提交
49 50
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
51
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
P
Physher 已提交
52 53 54
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

55 56
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
P
Physher 已提交
57
        customized_type_value = kMULMKLDNNINT8;
58 59 60 61 62 63
      } else if (input_data_type ==
                     framework::DataTypeTrait<
                         paddle::platform::bfloat16>::DataType() ||
                 input_data_type ==
                     framework::DataTypeTrait<float>::DataType()) {
        customized_type_value = kMULMKLDNNFP32;
P
Physher 已提交
64 65 66 67
      }
    }
#endif

68 69 70 71 72
    return framework::OpKernelType(input_data_type,
                                   ctx.GetPlace(),
                                   layout,
                                   library,
                                   customized_type_value);
P
Physher 已提交
73
  }
74 75
};

D
dongzhihong 已提交
76
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
77
 public:
Y
Yu Yang 已提交
78
  void Make() override {
C
caoying03 已提交
79 80 81
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
P
Physher 已提交
82 83
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
84 85
        .SetDefault(false)
        .AsExtra();
F
WIP  
fengjiayi 已提交
86
    AddAttr<int>(
F
fengjiayi 已提交
87
        "x_num_col_dims",
C
caoying03 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
103
        )DOC")
F
WIP  
fengjiayi 已提交
104
        .SetDefault(1)
F
fengjiayi 已提交
105
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
106
    AddAttr<int>(
F
fengjiayi 已提交
107
        "y_num_col_dims",
C
caoying03 已提交
108 109 110 111
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
112
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
113
        )DOC")
F
WIP  
fengjiayi 已提交
114
        .SetDefault(1)
F
fengjiayi 已提交
115
        .EqualGreaterThan(1);
116 117 118 119 120
    AddAttr<float>(
        "scale_x",
        "scale_x to be used for int8 mul input data x. scale_x has the"
        "same purpose as scale_in in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
121 122
        .SetDefault(1.0f)
        .AsExtra();
123 124 125 126 127
    AddAttr<std::vector<float>>(
        "scale_y",
        "scale_y to be used for int8 mul input data y. scale_y has the"
        "same purpose as scale_weights in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
128 129
        .SetDefault({1.0f})
        .AsExtra();
P
Physher 已提交
130 131 132
    AddAttr<float>("scale_out",
                   "scale_out to be used for int8 output data."
                   "Only used with MKL-DNN INT8")
133 134
        .SetDefault(1.0f)
        .AsExtra();
P
Physher 已提交
135 136 137 138
    AddAttr<bool>(
        "force_fp32_output",
        "(bool, default false) Force quantize kernel output FP32, only "
        "used in quantized MKL-DNN.")
139 140
        .SetDefault(false)
        .AsExtra();
141
    AddComment(R"DOC(
C
caoying03 已提交
142
Mul Operator.
K
kexinzhao 已提交
143

C
caoying03 已提交
144
This operator is used to perform matrix multiplication for input $X$ and $Y$.
145

146 147
The equation is:

C
caoying03 已提交
148
$$Out = X * Y$$
149

C
caoying03 已提交
150 151
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
152

153 154 155 156
)DOC");
  }
};

C
chengduo 已提交
157 158
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
159
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
160
      const override {
161 162
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
163 164 165
  }
};

166
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
167 168 169
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
        customized_type_value = kMULMKLDNNINT8;
      } else if (input_data_type ==
                     framework::DataTypeTrait<
                         paddle::platform::bfloat16>::DataType() ||
                 input_data_type ==
                     framework::DataTypeTrait<float>::DataType()) {
        customized_type_value = kMULMKLDNNFP32;
      }
    }
#endif

196 197 198 199 200
    return framework::OpKernelType(input_data_type,
                                   ctx.GetPlace(),
                                   layout,
                                   library,
                                   customized_type_value);
201
  }
D
dongzhihong 已提交
202 203
};

H
hong 已提交
204 205
template <typename T>
class MulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
206
 public:
H
hong 已提交
207
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
208 209

 protected:
210
  void Apply(GradOpPtr<T> retv) const override {
S
sneaxiy 已提交
211
    retv->SetType("mul_grad");
H
hong 已提交
212 213 214 215 216 217
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
218 219 220
  }
};

221 222 223 224 225
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
226 227 228
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
    OP_INOUT_CHECK(ctx->HasInput("DOut"), "Input", "DOut", "mul");
229

L
lvmengsi 已提交
230 231
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
232 233 234
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
235 236
      ctx->ShareDim("X", "DX");
    }
237
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
238 239 240 241 242
      ctx->ShareDim("Y", "DY");
    }
  }
};

H
hong 已提交
243 244
template <typename T>
class MulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
245
 public:
H
hong 已提交
246
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
247 248

 protected:
249
  void Apply(GradOpPtr<T> retv) const override {
250 251
    retv->SetType("mul_grad_grad");

H
hong 已提交
252 253 254 255 256
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
257

H
hong 已提交
258 259
    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddw = this->OutputGrad(framework::GradVarName("Y"));
260

L
lvmengsi 已提交
261
    if (!ddx.empty() || !ddw.empty()) {
H
hong 已提交
262
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
263
    }
264 265 266 267
    retv->SetOutput(
        "DX", ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));
268

H
hong 已提交
269
    retv->SetAttrMap(this->Attrs());
270 271 272
  }
};

273 274 275
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
276
namespace ops = paddle::operators;
277 278
DECLARE_INFER_SHAPE_FUNCTOR(mul,
                            MulInferShapeFunctor,
C
Chen Weihang 已提交
279
                            PD_INFER_META(phi::MatmulWithFlattenInferMeta));
280 281 282 283
REGISTER_OPERATOR(mul,
                  ops::MulOp,
                  ops::MulOpMaker,
                  ops::MulOpInferVarType,
H
hong 已提交
284
                  ops::MulOpGradMaker<paddle::framework::OpDesc>,
C
Chen Weihang 已提交
285 286
                  ops::MulOpGradMaker<paddle::imperative::OpBase>,
                  MulInferShapeFunctor);
P
Physher 已提交
287

288 289
DECLARE_INFER_SHAPE_FUNCTOR(mul_grad,
                            MulGradInferShapeFunctor,
C
Chen Weihang 已提交
290
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
291 292
REGISTER_OPERATOR(mul_grad,
                  ops::MulGradOp,
H
hong 已提交
293
                  ops::MulDoubleGradMaker<paddle::framework::OpDesc>,
C
Chen Weihang 已提交
294 295
                  ops::MulDoubleGradMaker<paddle::imperative::OpBase>,
                  MulGradInferShapeFunctor);
P
Physher 已提交
296

297
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);