engine.cc 14.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
19
#include <string>
W
wanghuancoder 已提交
20

21
#include "cuda_runtime_api.h"  // NOLINT
Y
Yan Chunwei 已提交
22 23
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"
24
#include "paddle/fluid/platform/gpu_info.h"
Y
Yan Chunwei 已提交
25 26 27 28 29

namespace paddle {
namespace inference {
namespace tensorrt {

30 31
int TensorRTEngine::runtime_batch_ = 1;

32 33 34 35 36 37 38 39 40 41 42
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
    infer_networkv2_.reset(infer_builder_->createNetworkV2(
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
    infer_builder_config_.reset(infer_builder_->createBuilderConfig());
    infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
43
    optim_profile_ = infer_builder_->createOptimizationProfile();
44 45 46 47
#endif
  } else {
    infer_network_.reset(infer_builder_->createNetwork());
  }
Y
Yan Chunwei 已提交
48 49
}

50 51
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
52
  freshDeviceId();
53 54 55 56 57 58 59
  auto infer_context = context();
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
#if IS_TRT_VERSION_GE(6000)
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
#endif
60
  }
N
nhzlx 已提交
61 62 63
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
64
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
65
  freshDeviceId();
66
  VLOG(3) << "TRT to freeze network";
67 68 69 70 71 72 73
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
74 75 76
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
Z
Zhaolong Xing 已提交
77
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
78
#if IS_TRT_VERSION_GE(5000)
Z
Zhaolong Xing 已提交
79 80 81 82 83 84
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    infer_builder_->setFp16Mode(support_fp16);
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
85 86
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
87 88
    }
  }
89
#else
90
  if (enable_fp16)
91
    LOG(INFO) << "Using FP16 in Paddle-TRT must ensure that the version of TRT "
92 93
                 "is at least 5."
                 "So, use FP32 to run.";
94
#endif
Z
Zhaolong Xing 已提交
95 96 97
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);

  if (enable_int8) {
N
nhzlx 已提交
98
    infer_builder_->setInt8Mode(true);
99 100 101 102 103 104 105 106 107 108 109 110 111 112
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
113 114
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
115 116 117 118
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
119 120
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
121 122 123 124
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
125 126 127
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
128 129
        }
      }
130
#if IS_TRT_VERSION_GE(5122)
131 132 133 134 135 136 137 138 139 140
      auto is_layer_int8 = [&](nvinfer1::ILayer *layer) -> bool {
        for (int j = 0; j < layer->getNbInputs(); j++) {
          auto *temp_in = layer->getInput(j);
          if (!temp_in->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its input("
                    << temp_in->getName() << ") doesn't have dynamic range.";
            return false;
          }
        }
141 142
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          auto *temp_out = layer->getOutput(j);
143 144 145 146 147 148 149 150 151 152 153
          if (temp_out->isNetworkOutput()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") is the output of the network.";
            return false;
          }
          if (!temp_out->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") doesn't have dynamic range.";
            return false;
154 155
          }
        }
156 157 158 159 160 161 162 163 164 165 166
        return true;
      };
      // If a layer's output is the network's output, or not all of its inputs
      // and outputs have scales,
      // this layer's precision and output type are set to float32.
      // This step has no effect if this layer is fused during TRT optimization.
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
        if (!is_layer_int8(layer)) {
          layer->setPrecision(nvinfer1::DataType::kFLOAT);
        }
167
      }
168 169 170 171 172
#else
      LOG(WARNING) << "If your TensorRT version is lower than 5.1.2.2, you "
                      "must provide quantization scales for all tensors using "
                      "TRT to run.";
#endif
173 174
#endif
    }
N
nhzlx 已提交
175
  }
Y
Yan Chunwei 已提交
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  if (use_dla_) {
    if (!enable_int8 && !enable_fp16) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (infer_builder_->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= infer_builder_->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << infer_builder_->getNbDLACores() << ", but got "
                     << dla_core_ << ", so use use 0 as default.";
      }
      infer_builder_->setDefaultDeviceType(nvinfer1::DeviceType::kDLA);
      infer_builder_->setDLACore(dla_core_);
      infer_builder_->allowGPUFallback(true);
      LOG(INFO) << "TensorRT DLA enabled in FreezeNetwork(), DLACore "
                << dla_core_;
    }
  }

200 201
  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
202
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
203 204 205 206 207 208 209 210 211 212 213
    for (auto &input : min_input_shape_) {
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMIN,
          Vec2TRT_Dims(input.second, input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMAX,
          Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kOPT,
          Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
    }
214
    infer_builder_config_->addOptimizationProfile(optim_profile_);
215 216 217 218 219 220 221 222
    infer_builder_config_->setMaxWorkspaceSize(max_workspace_);
    if (enable_int8) {
      // Due to a bug of TRT, we must set precision BuilderFlag to kFP16 before
      // kINT8 here to perform INT8 inference.
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSTRICT_TYPES);
    }
223 224 225 226 227 228 229 230 231 232
    if (WithFp16()) {
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
      if (disable_trt_plugin_fp16()) {
        LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                     "disabled the fp16 mode of TRT Plugin,\n"
                  << "you can reopen it with "
                     "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                     "opt_shape, false /*disable_trt_plugin_fp16*/)'";
      }
    }
233 234 235 236 237 238
    infer_engine_.reset(infer_builder_->buildEngineWithConfig(
        *network(), *infer_builder_config_));
#endif
  } else {
    infer_engine_.reset(infer_builder_->buildCudaEngine(*network()));
  }
239 240 241 242
  PADDLE_ENFORCE_NOT_NULL(
      infer_engine_, platform::errors::Fatal(
                         "Build TensorRT cuda engine failed! Please recheck "
                         "you configurations related to paddle-TensorRT."));
Y
Yan Chunwei 已提交
243 244
}

245
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
246
                                                nvinfer1::DataType dtype,
247
                                                const nvinfer1::Dims &dims) {
248 249 250 251
  PADDLE_ENFORCE_EQ(network() != nullptr, true,
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
252 253 254 255 256 257 258 259 260 261
  PADDLE_ENFORCE_NOT_NULL(
      input, platform::errors::InvalidArgument("Adding input %s failed in "
                                               "TensorRT inference network. "
                                               "Please recheck your input.",
                                               name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(), true,
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
262
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
263 264 265
  return input;
}

266 267 268
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
269
  SetITensor(name, output);
270 271 272
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
273
  output->setName(name.c_str());
274 275 276 277 278
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
279
  network()->markOutput(*output);
280 281 282 283 284
  PADDLE_ENFORCE_EQ(
      output->isNetworkOutput(), true,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
285 286
}

287 288
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
289 290 291
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
292
  output->setName(name.c_str());
293 294 295 296 297
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
298
  network()->markOutput(*output);
L
Luo Tao 已提交
299 300
}

301 302
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
303 304 305 306 307 308 309
  PADDLE_ENFORCE_NOT_NULL(
      tensor, platform::errors::InvalidArgument(
                  "Tensor named %s of TRT engine should not be null.", name));
  PADDLE_ENFORCE_EQ(
      0, itensor_map_.count(name),
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
310 311 312
  itensor_map_[name] = tensor;
}

313
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
314 315 316
  PADDLE_ENFORCE_EQ(itensor_map_.count(name), true,
                    platform::errors::NotFound(
                        "Tensor named %s is not found in TRT engine", name));
L
Luo Tao 已提交
317 318 319
  return itensor_map_[name];
}

320 321 322 323
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

324 325 326 327
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
328 329
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
P
Pei Yang 已提交
330 331
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
332
  platform::CPUPlace cpu_place;
333 334 335 336 337
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix), 0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
338 339 340 341 342 343
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
344 345 346
  return weight_data;
}

347 348
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
349
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
350 351
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
352
  owned_plugin_.emplace_back(plugin);
353
  return network()->addPluginExt(inputs, num_inputs, *plugin);
354 355
}

356 357 358 359 360 361 362
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2Ext(
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRTV2Ext *plugin) {
  owned_plugin_v2ext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

N
nhzlx 已提交
363 364 365
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
366 367 368 369
  PADDLE_ENFORCE_LT(device_id_, count,
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
                        device_id_, count));
L
Leo Chen 已提交
370
  platform::SetDeviceId(device_id_);
N
nhzlx 已提交
371 372
}

Y
Yan Chunwei 已提交
373 374 375
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle