run_program_op_node.h 33.8 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/eager/api/utils/global_utils.h"
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/tensor_wrapper.h"
20
#include "paddle/fluid/framework/variable_helper.h"
0
0x45f 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include "paddle/fluid/operators/run_program_op.h"
#include "paddle/fluid/platform/enforce.h"

namespace details {
using Tensor = paddle::experimental::Tensor;

static std::vector<Tensor> DereferenceTensors(
    const std::vector<Tensor *> &tensor_ptr) {
  std::vector<Tensor> res;
  for (auto *t : tensor_ptr) {
    res.emplace_back(*t);
  }
  return res;
}

static std::vector<std::string> GetTensorsName(const std::vector<Tensor> &ins) {
  std::vector<std::string> in_names;
  for (auto &in_t : ins) {
    in_names.emplace_back(in_t.name());
  }
  return in_names;
}

static std::vector<std::string> GetTensorsName(
    const std::vector<Tensor *> &ins) {
  std::vector<std::string> in_names;
  for (auto *in_t : ins) {
    in_names.emplace_back(in_t->name());
  }
  return in_names;
}

static void CheckInputVarStatus(const Tensor &tensor) {
54 55
  PADDLE_ENFORCE_EQ(tensor.defined() && tensor.is_dense_tensor(),
                    true,
56 57 58 59 60
                    paddle::platform::errors::InvalidArgument(
                        "The input tensor %s of "
                        "RunProgram(Grad)Op holds "
                        "wrong type. Expect type is DenseTensor.",
                        tensor.name()));
0
0x45f 已提交
61

62 63 64 65 66 67 68 69
  PADDLE_ENFORCE_EQ(
      static_cast<phi::DenseTensor *>(tensor.impl().get())->IsInitialized(),
      true,
      paddle::platform::errors::InvalidArgument(
          "The tensor in input tensor %s of "
          "RunProgram(Grad)Op "
          "is not initialized.",
          tensor.name()));
0
0x45f 已提交
70 71 72 73 74
}

static void CheckOutputVarStatus(const paddle::framework::Variable &src_var,
                                 const Tensor &dst_tensor) {
  auto name = dst_tensor.name();
75 76
  PADDLE_ENFORCE_EQ(dst_tensor.defined(),
                    true,
0
0x45f 已提交
77
                    paddle::platform::errors::InvalidArgument(
78
                        "dst_tensor `%s` shall be defined.", name));
0
0x45f 已提交
79

80
  if (dst_tensor.is_dense_tensor()) {
0
0x45f 已提交
81
    auto &src_tensor = src_var.Get<phi::DenseTensor>();
82 83
    PADDLE_ENFORCE_EQ(phi::DenseTensor::classof(&src_tensor),
                      true,
0
0x45f 已提交
84 85 86 87 88
                      paddle::platform::errors::InvalidArgument(
                          "The output tensor %s get from "
                          "RunProgram(Grad)Op's internal scope holds "
                          "wrong type. Expect type is DenseTensor",
                          name));
89
    PADDLE_ENFORCE_EQ(src_tensor.IsInitialized(),
90
                      true,
0
0x45f 已提交
91 92 93 94 95
                      paddle::platform::errors::InvalidArgument(
                          "The tensor in output tensor %s get from "
                          "RunProgram(Grad)Op's internal "
                          "scope is not initialized.",
                          name));
96
  } else if (dst_tensor.is_selected_rows()) {
0
0x45f 已提交
97
    auto &src_tensor = src_var.Get<phi::SelectedRows>();
98 99
    PADDLE_ENFORCE_EQ(phi::SelectedRows::classof(&src_tensor),
                      true,
0
0x45f 已提交
100 101 102 103 104
                      paddle::platform::errors::InvalidArgument(
                          "The output tensodfr %s get from "
                          "RunProgram(Grad)Op's internal scope holds "
                          "wrong type. Expect type is SelectedRows",
                          name));
105 106
    PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                      true,
0
0x45f 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                      paddle::platform::errors::InvalidArgument(
                          "The tensor in output tensor %s get from "
                          "RunProgram(Grad)Op's "
                          "internal scope is not initialized.",
                          name));

  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The RunProgram(Grad)Op only support output "
        "variable of type LoDTensor or SelectedRows",
        name));
  }
}

static void ShareTensorsIntoScope(const std::vector<Tensor> &tensors,
                                  paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto name = tensors[i].name();
125
    if (name == "Fake_var") {
0
0x45f 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
      continue;
    }
    auto *var = scope->Var(name);
    CheckInputVarStatus(tensors[i]);
    // share tensor
    auto tensor_base = tensors[i].impl();
    if (phi::DenseTensor::classof(tensor_base.get())) {
      auto *dst_tensor = var->GetMutable<phi::DenseTensor>();
      auto t = std::dynamic_pointer_cast<phi::DenseTensor>(tensor_base);
      *dst_tensor = *t;
    } else if (phi::SelectedRows::classof(tensor_base.get())) {
      auto *dst_tensor = var->GetMutable<phi::SelectedRows>();
      auto t = std::dynamic_pointer_cast<phi::SelectedRows>(tensor_base);
      *dst_tensor = *t;
    }
  }
}

static void ShareTensorsFromScope(
    const std::vector<Tensor *> &tensors,
    const paddle::framework::BlockDesc &global_block,
    paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    // NOTE: In case of setting out_tmp.stop_gradient = True in model code, all
    // parameters before generating out_tmp have no @GRAD, it will raise error
    // because we can't find them in scope. So we skip sharing these vars or
    // var@GRAD if they don't appear in global block.
    auto &name = tensors[i]->name();
    if (name == paddle::framework::kEmptyVarName || name == "Fake_var" ||
        !global_block.HasVar(name)) {
      VLOG(2) << "find tensor name is " << name << ", skip it!";
      continue;
    }
    // NOTE: Here skip not found var is dangerous, if a bug is caused here,
    // the result is grad calculation error, which will be very hidden!
    auto *var = scope->FindVar(name);
162 163 164 165 166 167
    PADDLE_ENFORCE_NOT_NULL(
        var,
        paddle::platform::errors::NotFound("The output tensor %s is not in "
                                           "RunProgram(Grad)Op'"
                                           "s internal scope.",
                                           name));
0
0x45f 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    CheckOutputVarStatus(*var, *tensors[i]);
    // share tensor
    if (var->IsType<phi::DenseTensor>()) {
      auto &src_tensor = var->Get<phi::DenseTensor>();
      auto *dst_tensor = const_cast<phi::DenseTensor *>(
          dynamic_cast<const phi::DenseTensor *>(tensors[i]->impl().get()));
      VLOG(2) << "share " << name << " from scope";
      *dst_tensor = src_tensor;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto &src_tensor = var->Get<phi::SelectedRows>();
      auto *dst_tensor = const_cast<phi::SelectedRows *>(
          dynamic_cast<const phi::SelectedRows *>(tensors[i]->impl().get()));
      *dst_tensor = src_tensor;
    }
  }
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
static void ShareTensorsFromScopeWithPartialBlock(
    const std::vector<Tensor *> &tensors,
    const paddle::framework::BlockDesc &forward_global_block,
    const paddle::framework::BlockDesc &backward_global_block,
    paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &name = tensors[i]->name();
    if (name == paddle::framework::kEmptyVarName || name == "Fake_var" ||
        (!forward_global_block.HasVar(name) &&
         !backward_global_block.HasVar(name))) {
      VLOG(2) << "find tensor name is " << name << ", skip it!";
      continue;
    }
    auto *var = scope->FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        paddle::platform::errors::NotFound("The output tensor %s is not in "
                                           "RunProgram(Grad)Op'"
                                           "s internal scope.",
                                           name));
    CheckOutputVarStatus(*var, *tensors[i]);
    // share tensor
    if (var->IsType<phi::DenseTensor>()) {
      auto &src_tensor = var->Get<phi::DenseTensor>();
      auto *dst_tensor = const_cast<phi::DenseTensor *>(
          dynamic_cast<const phi::DenseTensor *>(tensors[i]->impl().get()));
      VLOG(2) << "share " << name << " from scope";
      *dst_tensor = src_tensor;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto &src_tensor = var->Get<phi::SelectedRows>();
      auto *dst_tensor = const_cast<phi::SelectedRows *>(
          dynamic_cast<const phi::SelectedRows *>(tensors[i]->impl().get()));
      *dst_tensor = src_tensor;
    }
  }
}

static void BuildScopeByBlock(
    const paddle::framework::InterpreterCore &interpreter_core,
    const paddle::framework::BlockDesc &block,
    paddle::framework::Scope *scope) {
  for (auto &var_desc : block.AllVars()) {
    auto var_name = var_desc->Name();
    if (var_name == paddle::framework::kEmptyVarName) {
      continue;
    }
    if (!scope->FindLocalVar(var_name)) {
      auto *ptr = scope->Var(var_name);
      InitializeVariable(ptr, var_desc->GetType());
      VLOG(2) << "Initialize Block Variable " << var_name;
    }
  }
  auto &data_transfer_added_vars =
      interpreter_core.GetVariableScope()->DataTransferAddedVars();
  for (size_t i = 0; i < data_transfer_added_vars.size(); i++) {
    auto *ptr = scope->Var(data_transfer_added_vars[i].first);
    InitializeVariable(ptr,
                       static_cast<paddle::framework::proto::VarType::Type>(
                           data_transfer_added_vars[i].second));
    VLOG(2) << "Initialize Transfer Added Variable "
            << data_transfer_added_vars[i].first;
  }
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static void GcScope(paddle::framework::Scope *scope) {
  std::deque<std::shared_ptr<paddle::memory::Allocation>> *garbages =
      new std::deque<std::shared_ptr<paddle::memory::Allocation>>();

  for (auto &var : scope->LocalVars()) {
    if (var != nullptr) {
      if (var->IsType<paddle::framework::LoDTensor>()) {
        garbages->emplace_back(var->GetMutable<paddle::framework::LoDTensor>()
                                   ->MoveMemoryHolder());
      }
      if (var->IsType<phi::SelectedRows>()) {
        garbages->emplace_back(var->GetMutable<phi::SelectedRows>()
                                   ->mutable_value()
                                   ->MoveMemoryHolder());
      }
      if (var->IsType<paddle::framework::LoDTensorArray>()) {
        auto *lod_tensor_arr =
            var->GetMutable<paddle::framework::LoDTensorArray>();
        for (auto &t : *lod_tensor_arr) {
          garbages->emplace_back(t.MoveMemoryHolder());
        }
        lod_tensor_arr->clear();
      }
    }
  }
  delete garbages;  // free mem
}

0
0x45f 已提交
277 278 279 280 281 282 283 284 285 286
}  // namespace details

inline void RunProgramAPI(
    const std::vector<paddle::experimental::Tensor> &x,
    const std::vector<paddle::experimental::Tensor> &params,
    std::vector<paddle::experimental::Tensor *> &out,     // NOLINT
    std::vector<paddle::framework::Scope *> &step_scope,  // NOLINT
    std::vector<paddle::experimental::Tensor *> &dout,    // NOLINT
    const paddle::framework::AttributeMap &attrs) {
  VLOG(2) << "RunProgramOpKernel Compute";
0
0x45f 已提交
287 288 289 290 291
  // In the original run_program OP, the default value of the is_test
  // attribute is false, we should check if there is is_test parameter
  // in attrs
  auto is_test = false;
  if (attrs.count("is_test")) {
R
Ruibiao Chen 已提交
292
    is_test = PADDLE_GET_CONST(bool, attrs.at("is_test"));
0
0x45f 已提交
293
  }
R
Ruibiao Chen 已提交
294
  auto program_id = PADDLE_GET_CONST(int64_t, attrs.at("program_id"));
295
  auto place = egr::Controller::Instance().GetExpectedPlace();
0
0x45f 已提交
296 297 298 299 300

  // NOTE(chenweihang): In order not to add new variable type, use vector
  // here. Originally, here can use scope directly.
  auto *out_scope_vec = &step_scope;
  PADDLE_ENFORCE_EQ(
301 302
      out_scope_vec->size(),
      1,
0
0x45f 已提交
303 304 305
      paddle::platform::errors::InvalidArgument(
          "The OutScope of RunProgramGradOp should only hold one scope."));

306 307
  bool use_interpretorcore =
      PADDLE_GET_CONST(bool, attrs.at("use_interpretorcore"));
0
0x45f 已提交
308

309
  if (use_interpretorcore) {
310
    VLOG(0) << "RunProgramOp use interpretercore to execute program.";
0
0x45f 已提交
311

312 313
    paddle::framework::Scope *global_inner_scope = out_scope_vec->front();

0
0x45f 已提交
314 315 316
    auto input_names = details::GetTensorsName(x);
    auto output_names = details::GetTensorsName(out);
    auto dout_names = details::GetTensorsName(dout);
317 318 319 320 321 322 323 324 325 326 327 328 329 330

    auto *forward_global_block = PADDLE_GET_CONST(
        paddle::framework::BlockDesc *, attrs.at("forward_global_block"));
    auto *backward_global_block = PADDLE_GET_CONST(
        paddle::framework::BlockDesc *, attrs.at("backward_global_block"));
    auto *forward_program = forward_global_block->Program();
    auto *backward_program = backward_global_block->Program();

    auto &interpretercore_info_cache =
        paddle::framework::InterpreterCoreInfoCache::Instance();

    if (!interpretercore_info_cache.Has(program_id, /*is_grad=*/false)) {
      VLOG(2) << "No interpretercore cahce, so create a new interpretercore";
      // Step 1. share input_vars & parameters into scope
331 332
      details::ShareTensorsIntoScope(x, global_inner_scope);
      details::ShareTensorsIntoScope(params, global_inner_scope);
333 334 335
      // Step 2. create new interpretercore
      auto interpreter_core =
          paddle::framework::CreateInterpreterCoreInfoToCache(
336 337 338 339 340
              *forward_program,
              place,
              /*is_grad=*/false,
              program_id,
              global_inner_scope);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
      // Step 3. get all eager gc vars
      std::set<std::string> skip_eager_delete_vars =
          paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet(
              *backward_program);
      // all out_vars are skip_eager_var
      skip_eager_delete_vars.insert(output_names.begin(), output_names.end());
      skip_eager_delete_vars.insert(dout_names.begin(), dout_names.end());
      // update interpretercore skip_gc_var
      interpreter_core->SetSkipGcVars(skip_eager_delete_vars);
      interpretercore_info_cache.UpdateSkipEagerDeleteVars(
          program_id, false, skip_eager_delete_vars);
      VLOG(2) << "Get skip GC vars size is: " << skip_eager_delete_vars.size();
      // Step 4. interpretercore run
      if (forward_global_block->OpSize() > 0) {
        interpreter_core->Run({});
      }
      // Step 5. Get Output
358 359 360 361 362 363 364 365
      details::ShareTensorsFromScopeWithPartialBlock(out,
                                                     *forward_global_block,
                                                     *backward_global_block,
                                                     global_inner_scope);
      details::ShareTensorsFromScopeWithPartialBlock(dout,
                                                     *forward_global_block,
                                                     *backward_global_block,
                                                     global_inner_scope);
366 367 368 369 370 371 372
    } else {
      VLOG(2) << "Get interpretercore cahce by program:" << program_id;
      // Step 1. get cache interpretercore
      auto &cached_value =
          interpretercore_info_cache.GetMutable(program_id, /*is_grad=*/false);
      auto &interpreter_core = cached_value.core_;
      // Step 2. update scope for cache interpretercore
373 374 375 376 377 378 379 380
      details::ShareTensorsIntoScope(x, global_inner_scope);
      details::ShareTensorsIntoScope(params, global_inner_scope);
      if (interpreter_core->GetVariableScope()->GetMutableScope() !=
          global_inner_scope) {
        details::BuildScopeByBlock(
            *interpreter_core.get(), *forward_global_block, global_inner_scope);
        interpreter_core->reset_scope(global_inner_scope);
      }
381 382 383 384 385
      // Step 3. interpretercore run
      if (forward_global_block->OpSize() > 0) {
        interpreter_core->Run({});
      }
      // Step 4. Get Output
386 387 388 389 390 391 392 393
      details::ShareTensorsFromScopeWithPartialBlock(out,
                                                     *forward_global_block,
                                                     *backward_global_block,
                                                     global_inner_scope);
      details::ShareTensorsFromScopeWithPartialBlock(dout,
                                                     *forward_global_block,
                                                     *backward_global_block,
                                                     global_inner_scope);
0
0x45f 已提交
394
    }
395
    VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(out_scope_vec->front());
0
0x45f 已提交
396

397
    if (is_test) {
398 399 400 401 402 403
      VLOG(4) << "is test, set this scope can reused";
      global_inner_scope->SetCanReuesd(true);
      details::GcScope(global_inner_scope);
    } else {
      VLOG(4) << "not test, set this scope can not reused";
      global_inner_scope->SetCanReuesd(false);
404
    }
405
#ifdef PADDLE_WITH_MKLDNN
406
    if (FLAGS_use_mkldnn) paddle::platform::DontClearMKLDNNCache(place);
407
#endif
408 409
  } else {
    VLOG(2) << "RunProgramOp execute with parallel_executor.";
410 411 412 413 414 415 416 417 418 419 420 421

    // Step 2. prepare executor and init persistable variables
    // NOTE(Aurelius84): While training some models, forward can be called many
    // times and then apply backpropagation all at once, such as Reinforcement
    // Learning. Tensor data in multi-step training should be saved into single
    // scope separately. Otherwise, the gradients can be miscalculated because
    // always using the Tensor data of the last step in forward.
    paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
    VLOG(2) << "The number of sub scopes before forward: "
            << out_scope_vec->front()->kids().size();
    paddle::framework::Scope &scope = global_inner_scope->NewScope();

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    // share input_vars & parameters into scope
    details::ShareTensorsIntoScope(x, &scope);
    details::ShareTensorsIntoScope(params, &scope);

    const auto &place = egr::Controller::Instance().GetExpectedPlace();

    auto *global_block = PADDLE_GET_CONST(paddle::framework::BlockDesc *,
                                          attrs.at("global_block"));
    auto start_op_index = PADDLE_GET_CONST(int64_t, attrs.at("start_op_index"));
    auto end_op_index = PADDLE_GET_CONST(int64_t, attrs.at("end_op_index"));

    if (end_op_index > start_op_index) {
      auto input_names = details::GetTensorsName(x);
      auto output_names = details::GetTensorsName(out);
      auto dout_names = details::GetTensorsName(dout);
      auto *program = global_block->Program();

      auto cache_info =
          paddle::framework::GetExecutorInfoFromCache(*program,
                                                      place,
                                                      start_op_index,
                                                      end_op_index,
                                                      /*is_grad=*/false,
                                                      program_id,
                                                      &scope);
      auto &parallel_executor = cache_info.first;
      // all out_vars are skip_eager_var
      auto &skip_eager_delete_vars =
          paddle::framework::ExecutorInfoCache::Instance().SkipEagerDeleteVars(
              program_id, false);
      if (cache_info.second /*is_new_created*/) {
        parallel_executor->SkipMemoryReuse(/*scope_idx=*/0, input_names);
        skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                      output_names.begin(),
                                      output_names.end());
        skip_eager_delete_vars.insert(
            skip_eager_delete_vars.end(), dout_names.begin(), dout_names.end());
        paddle::framework::details::ParseSafeEagerDeletionSkipVars(
            *program, end_op_index, output_names, &skip_eager_delete_vars);
      }

      // Step 3. run ops
      parallel_executor->RunWithoutFetch(skip_eager_delete_vars);
    }
    // Step 4. Get Output
    details::ShareTensorsFromScope(out, *global_block, &scope);
    details::ShareTensorsFromScope(dout, *global_block, &scope);

    // Debug info: scope info when run end
    VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(out_scope_vec->front());
    // Step 5. Drop all children scopes while testing.
    if (is_test) {
      out_scope_vec->front()->DropKids();
    }
    VLOG(2) << "The number of sub scopes after forward: "
            << out_scope_vec->front()->kids().size();
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) paddle::platform::DontClearMKLDNNCache(place);
#endif
  }
0
0x45f 已提交
482 483 484 485 486 487 488 489 490 491
}

inline void RunProgramGradAPI(
    const std::vector<paddle::experimental::Tensor> &x,
    const std::vector<paddle::experimental::Tensor> &params,
    const std::vector<paddle::experimental::Tensor> &out_grad,
    const std::vector<paddle::framework::Scope *> &step_scope,  // NOLINT
    const paddle::framework::AttributeMap &attrs,
    std::vector<paddle::experimental::Tensor *> &x_grad,      // NOLINT
    std::vector<paddle::experimental::Tensor *> &params_grad  // NOLINT
492
) {
0
0x45f 已提交
493 494 495
  // if all output vars are set to stop_gradient, grad op no need to executed
  if (x_grad.empty() && params_grad.empty()) return;

496 497
  bool use_interpretorcore =
      PADDLE_GET_CONST(bool, attrs.at("use_interpretorcore"));
R
Ruibiao Chen 已提交
498
  auto program_id = PADDLE_GET_CONST(int64_t, attrs.at("program_id"));
0
0x45f 已提交
499 500 501

  auto *out_scope_vec = &step_scope;
  PADDLE_ENFORCE_EQ(
502 503
      out_scope_vec->size(),
      1,
0
0x45f 已提交
504 505 506
      paddle::platform::errors::InvalidArgument(
          "The OutScope of RunProgramGradOp should only hold one scope."));

507 508 509
  auto place = egr::Controller::Instance().GetExpectedPlace();

  if (use_interpretorcore) {
510
    VLOG(0) << "RunProgramGradOp use interpretercore to execute program.";
511

512 513
    paddle::framework::Scope *global_inner_scope = out_scope_vec->front();

514 515 516 517 518
    auto *forward_global_block = PADDLE_GET_CONST(
        paddle::framework::BlockDesc *, attrs.at("forward_global_block"));
    auto *backward_global_block = PADDLE_GET_CONST(
        paddle::framework::BlockDesc *, attrs.at("backward_global_block"));
    auto *backward_program = backward_global_block->Program();
0
0x45f 已提交
519 520

    auto out_grad_names = details::GetTensorsName(out_grad);
521

0
0x45f 已提交
522 523 524 525 526 527 528 529 530
    std::vector<std::string> x_grad_names;
    std::vector<std::string> param_grad_names;
    if (!x_grad.empty()) {
      x_grad_names = details::GetTensorsName(x_grad);
    }
    if (!params_grad.empty()) {
      param_grad_names = details::GetTensorsName(params_grad);
    }

531 532 533 534
    auto &interpretercore_info_cache =
        paddle::framework::InterpreterCoreInfoCache::Instance();
    if (!interpretercore_info_cache.Has(program_id, /*is_grad=*/true)) {
      VLOG(2) << "No interpretercore cahce, so create a new interpretercore";
535
      details::ShareTensorsIntoScope(out_grad, global_inner_scope);
536 537
      auto interpreter_core =
          paddle::framework::CreateInterpreterCoreInfoToCache(
538 539 540 541 542
              *backward_program,
              place,
              /*is_grad=*/true,
              program_id,
              global_inner_scope);
543 544 545 546 547 548

      // get all eager gc vars
      std::set<std::string> skip_eager_delete_vars;
      // all out_vars are skip_eager_var
      skip_eager_delete_vars.insert(x_grad_names.begin(), x_grad_names.end());
      // initialize skip gc vars by forward_program and backward_program
0
0x45f 已提交
549 550
      paddle::framework::details::AppendSkipDeletionVars(
          param_grad_names, &skip_eager_delete_vars);
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
      interpreter_core->SetSkipGcVars(skip_eager_delete_vars);
      interpretercore_info_cache.UpdateSkipEagerDeleteVars(
          program_id, /*is_grad=*/true, skip_eager_delete_vars);
      VLOG(2) << "Get skip GC vars size is: " << skip_eager_delete_vars.size();
      if (backward_global_block->OpSize() > 0) {
        // Debug info: scope info when run end
        VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(
            out_scope_vec->front());
        interpreter_core->Run({});
      }
    } else {
      VLOG(2) << "Get interpretercore cahce by program:" << program_id;
      auto &cached_value =
          interpretercore_info_cache.GetMutable(program_id, /*is_grad=*/true);
      auto &interpreter_core = cached_value.core_;
      // update scope
567 568 569 570 571 572 573 574
      details::ShareTensorsIntoScope(out_grad, global_inner_scope);
      if (interpreter_core->GetVariableScope()->GetMutableScope() !=
          global_inner_scope) {
        details::BuildScopeByBlock(*interpreter_core.get(),
                                   *backward_global_block,
                                   global_inner_scope);
        interpreter_core->reset_scope(global_inner_scope);
      }
575 576 577 578 579 580 581 582 583

      if (backward_global_block->OpSize() > 0) {
        // Debug info: scope info when run end
        VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(
            out_scope_vec->front());
        interpreter_core->Run({});
      }
    }
    // Step 4. get outputs
584 585 586 587 588 589 590 591 592 593 594
    details::ShareTensorsFromScopeWithPartialBlock(x_grad,
                                                   *forward_global_block,
                                                   *backward_global_block,
                                                   global_inner_scope);
    details::ShareTensorsFromScopeWithPartialBlock(params_grad,
                                                   *forward_global_block,
                                                   *backward_global_block,
                                                   global_inner_scope);
    VLOG(4) << "after backward gc all vars";
    global_inner_scope->SetCanReuesd(true);
    details::GcScope(global_inner_scope);
595
  } else {
596 597 598 599 600 601 602 603 604 605 606 607 608
    VLOG(2) << "RunProgramGradOp use pe to execute program.";

    paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
    auto sub_scope_num = global_inner_scope->kids().size();
    VLOG(2) << "The number of sub scopes before backward: " << sub_scope_num;
    PADDLE_ENFORCE_GT(sub_scope_num,
                      0,
                      paddle::platform::errors::InvalidArgument(
                          "The OutScope of RunProgramGradOp should hold at "
                          "least one sub scope."));

    auto &scope = *(global_inner_scope->kids().front());

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
    auto *global_block = PADDLE_GET_CONST(paddle::framework::BlockDesc *,
                                          attrs.at("global_block"));
    auto orig_end_op_index =
        PADDLE_GET_CONST(int64_t, attrs.at("end_op_index"));

    // NOTE: skip `shape` and `fill_constant` op created by
    // fluid.backward.gradients, one forward output will generate one `shape`
    // and `fill_constant`
    int64_t start_op_index = orig_end_op_index + (out_grad.size() * 2);
    int64_t end_op_index = global_block->OpSize();

    if (end_op_index > start_op_index) {
      auto out_grad_names = details::GetTensorsName(out_grad);
      // NOTE: after PR22939 [Add double grad] merged, the grad op maker's
      //   SetOutput will set to None if the input var stop_gradient=True,
      //   it will cause an NotFound error when ctx.OutputNames() is called
      std::vector<std::string> x_grad_names;
      std::vector<std::string> param_grad_names;
      if (!x_grad.empty()) {
        x_grad_names = details::GetTensorsName(x_grad);
      }
      if (!params_grad.empty()) {
        param_grad_names = details::GetTensorsName(params_grad);
      }

      // Step 2. prepare executor and scope
      auto *program = global_block->Program();
      auto cache_info =
          paddle::framework::GetExecutorInfoFromCache(*program,
                                                      place,
                                                      start_op_index,
                                                      end_op_index,
                                                      /*is_grad*/ true,
                                                      program_id,
                                                      &scope);
      auto &parallel_executor = cache_info.first;

      auto &skip_eager_delete_vars =
          paddle::framework::ExecutorInfoCache::Instance().SkipEagerDeleteVars(
              program_id, true);
      if (cache_info.second /*is_new_created*/) {
        parallel_executor->SkipMemoryReuse(/*scope_idx=*/0, out_grad_names);

        skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                      x_grad_names.begin(),
                                      x_grad_names.end());
        paddle::framework::details::AppendSkipDeletionVars(
            param_grad_names, &skip_eager_delete_vars);
      }

      details::ShareTensorsIntoScope(out_grad, &scope);
      // Debug info: scope info when run end
      VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(
          out_scope_vec->front());

      // Step 3. run ops
      parallel_executor->RunWithoutFetch(
          /*skip_eager_delete_vars=*/skip_eager_delete_vars);
0
0x45f 已提交
667 668
    }

669 670 671
    // Step 4. get outputs
    details::ShareTensorsFromScope(x_grad, *global_block, &scope);
    details::ShareTensorsFromScope(params_grad, *global_block, &scope);
0
0x45f 已提交
672

673 674 675 676
    // Step5. drop current scope
    global_inner_scope->DeleteScope(&scope);
    VLOG(2) << "The number of sub scopes after backward: "
            << global_inner_scope->kids().size();
0
0x45f 已提交
677 678 679 680 681 682 683 684 685 686
  }
}

class GradNodeRunProgram : public egr::GradNodeBase {
 public:
  GradNodeRunProgram(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
      : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}

  ~GradNodeRunProgram() override = default;
  // Functor: perform backward computations
687 688 689 690
  virtual paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                               egr::kSlotSmallVectorSize>
  operator()(paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                                  egr::kSlotSmallVectorSize> &grads,  // NOLINT
691 692
             bool create_graph,
             bool is_new_grad) override {
0
0x45f 已提交
693
    VLOG(3) << "Running Eager Backward Node: GradNodeRunProgram";
694 695 696
    paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                         egr::kSlotSmallVectorSize>
        hooked_grads = GradNodeRunProgram::ApplyGradientHooks(grads);
697 698
    PADDLE_ENFORCE_EQ(hooked_grads.size(),
                      1,
699 700 701
                      paddle::platform::errors::InvalidArgument(
                          "The hooked_grads.size() of RunProgramGradOp should "
                          "be equal to 1."));
0
0x45f 已提交
702

W
wanghuancoder 已提交
703 704
    egr::EagerUtils::FillZeroForEmptyOptionalGradInput(&hooked_grads[0],
                                                       this->InputMeta()[0]);
705
    VLOG(3) << "hooked_grads[0].size() : " << hooked_grads[0].size();
0
0x45f 已提交
706 707
    std::vector<paddle::experimental::Tensor> x_grad;
    std::vector<paddle::experimental::Tensor> params_grad;
708 709
    ConstructXGradTensors(x_, &x_grad);
    ConstructParamGradTensors(params_, &params_grad);
0
0x45f 已提交
710 711 712 713 714 715
    std::vector<paddle::experimental::Tensor *> x_grad_ptr;
    std::vector<paddle::experimental::Tensor *> params_grad_ptr;
    for (auto &i : x_grad) {
      x_grad_ptr.emplace_back(&i);
    }
    for (auto &i : params_grad) {
0
0x45f 已提交
716 717 718
      if (i.defined()) {
        params_grad_ptr.emplace_back(&i);
      }
0
0x45f 已提交
719 720
    }

721 722
    PADDLE_ENFORCE_EQ(hooked_grads[0].size(),
                      fwd_out_names_.size(),
723 724 725
                      paddle::platform::errors::InvalidArgument(
                          "The hooked_grads[0].size() and "
                          "fwd_out_names_.size() should be equal."));
0
0x45f 已提交
726
    for (size_t i = 0; i < fwd_out_names_.size(); ++i) {
727
      hooked_grads[0][i].set_name(fwd_out_names_[i] + "@GRAD");
0
0x45f 已提交
728
    }
729 730 731 732 733 734 735
    RunProgramGradAPI(x_,
                      params_,
                      hooked_grads[0],
                      step_scope_,
                      attrs_,
                      x_grad_ptr,
                      params_grad_ptr);
0
0x45f 已提交
736 737 738 739
    VLOG(3) << "End Eager Backward Node: GradNodeRunProgram";
    return {x_grad, params_grad};
  }

740 741
  void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; }

0
0x45f 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
  // SetAttrMap
  void SetAttrMap(const paddle::framework::AttributeMap &attrs) {
    attrs_ = attrs;
  }

  void SetFwdX(const std::vector<paddle::experimental::Tensor> &tensors) {
    x_ = tensors;
  }

  void SetFwdParams(const std::vector<paddle::experimental::Tensor> &tensors) {
    params_ = tensors;
  }

  void SetStepScope(const std::vector<paddle::framework::Scope *> &scopes) {
    step_scope_ = scopes;
  }

  void SetFwdOutNames(std::vector<std::string> out_names) {
    fwd_out_names_ = out_names;
  }

 protected:
764 765 766
  void ConstructXGradTensors(
      const std::vector<paddle::experimental::Tensor> &x,
      std::vector<paddle::experimental::Tensor> *x_grad) {
0
0x45f 已提交
767 768
    // TODO(dev): Need an elegant way to determine inforamtion of grad_tensor,
    // such as: name, tensor type(DenseTensor or SelectedRows).
769 770 771 772 773
    for (auto &t : x) {
      if (t.is_dense_tensor()) {
        x_grad->emplace_back(std::make_shared<phi::DenseTensor>());
      } else if (t.is_selected_rows()) {
        x_grad->emplace_back(std::make_shared<phi::SelectedRows>());
774
      }
775
      x_grad->back().set_name(t.name() + "@GRAD");
0
0x45f 已提交
776 777 778
    }
  }

779 780 781 782 783
  void ConstructParamGradTensors(
      const std::vector<paddle::experimental::Tensor> &param,
      std::vector<paddle::experimental::Tensor> *param_grad) {
    for (auto &t : param) {
      auto t_grad = egr::EagerUtils::unsafe_autograd_meta(t)->Grad();
784 785 786
      // In eager mode, the number of param_grad should be the same as
      // param, so here an empty Tensor is added for the param with
      // stop_gradient=True
0
0x45f 已提交
787
      if (!t_grad.defined()) {
788 789 790 791 792 793 794
        param_grad->emplace_back();
      } else if (t_grad.is_dense_tensor()) {
        param_grad->emplace_back(std::make_shared<phi::DenseTensor>());
      } else if (t_grad.is_selected_rows()) {
        param_grad->emplace_back(std::make_shared<phi::SelectedRows>());
      }
      param_grad->back().set_name(t.name() + "@GRAD");
0
0x45f 已提交
795 796 797
    }
  }

798 799 800 801 802 803
  std::shared_ptr<GradNodeBase> Copy() const override {
    auto copied_node =
        std::shared_ptr<GradNodeRunProgram>(new GradNodeRunProgram(*this));
    return copied_node;
  }

0
0x45f 已提交
804 805 806 807 808 809 810 811 812 813 814
 private:
  // TensorWrappers
  std::vector<paddle::experimental::Tensor> x_;
  std::vector<paddle::experimental::Tensor> params_;
  std::vector<paddle::framework::Scope *> step_scope_;

  std::vector<std::string> fwd_out_names_;

  // Attribute Map
  paddle::framework::AttributeMap attrs_;
};