run_program_op_node.h 19.0 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/eager/api/utils/global_utils.h"
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/tensor_wrapper.h"

#include "paddle/fluid/operators/run_program_op.h"
#include "paddle/fluid/platform/enforce.h"

namespace details {
using Tensor = paddle::experimental::Tensor;

static std::vector<Tensor> DereferenceTensors(
    const std::vector<Tensor *> &tensor_ptr) {
  std::vector<Tensor> res;
  for (auto *t : tensor_ptr) {
    res.emplace_back(*t);
  }
  return res;
}

static std::vector<std::string> GetTensorsName(const std::vector<Tensor> &ins) {
  std::vector<std::string> in_names;
  for (auto &in_t : ins) {
    in_names.emplace_back(in_t.name());
  }
  return in_names;
}

static std::vector<std::string> GetTensorsName(
    const std::vector<Tensor *> &ins) {
  std::vector<std::string> in_names;
  for (auto *in_t : ins) {
    in_names.emplace_back(in_t->name());
  }
  return in_names;
}

static void CheckInputVarStatus(const Tensor &tensor) {
  PADDLE_ENFORCE_EQ(
      tensor.defined() && phi::DenseTensor::classof(tensor.impl().get()), true,
      paddle::platform::errors::InvalidArgument(
          "The input tensor %s of "
          "RunProgram(Grad)Op holds "
          "wrong type. Expect type is DenseTensor.",
          tensor.name()));

  PADDLE_ENFORCE_EQ(tensor.initialized(), true,
                    paddle::platform::errors::InvalidArgument(
                        "The tensor in input tensor %s of "
                        "RunProgram(Grad)Op "
                        "is not initialized.",
                        tensor.name()));
}

static void CheckOutputVarStatus(const paddle::framework::Variable &src_var,
                                 const Tensor &dst_tensor) {
  auto name = dst_tensor.name();
  PADDLE_ENFORCE_EQ(dst_tensor.defined(), true,
                    paddle::platform::errors::InvalidArgument(
                        "dst_tensor shall be defined."));

  if (phi::DenseTensor::classof(dst_tensor.impl().get())) {
    auto &src_tensor = src_var.Get<phi::DenseTensor>();
    PADDLE_ENFORCE_EQ(phi::DenseTensor::classof(&src_tensor), true,
                      paddle::platform::errors::InvalidArgument(
                          "The output tensor %s get from "
                          "RunProgram(Grad)Op's internal scope holds "
                          "wrong type. Expect type is DenseTensor",
                          name));
    PADDLE_ENFORCE_EQ(src_tensor.initialized(), true,
                      paddle::platform::errors::InvalidArgument(
                          "The tensor in output tensor %s get from "
                          "RunProgram(Grad)Op's internal "
                          "scope is not initialized.",
                          name));
  } else if (phi::SelectedRows::classof(dst_tensor.impl().get())) {
    auto &src_tensor = src_var.Get<phi::SelectedRows>();
    PADDLE_ENFORCE_EQ(phi::SelectedRows::classof(&src_tensor), true,
                      paddle::platform::errors::InvalidArgument(
                          "The output tensodfr %s get from "
                          "RunProgram(Grad)Op's internal scope holds "
                          "wrong type. Expect type is SelectedRows",
                          name));
    PADDLE_ENFORCE_EQ(src_tensor.initialized(), true,
                      paddle::platform::errors::InvalidArgument(
                          "The tensor in output tensor %s get from "
                          "RunProgram(Grad)Op's "
                          "internal scope is not initialized.",
                          name));

  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The RunProgram(Grad)Op only support output "
        "variable of type LoDTensor or SelectedRows",
        name));
  }
}

static void ShareTensorsIntoScope(const std::vector<Tensor> &tensors,
                                  paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto name = tensors[i].name();
    if (name == "Fake_var" || !tensors[i].is_initialized()) {
      continue;
    }
    auto *var = scope->Var(name);
    CheckInputVarStatus(tensors[i]);
    // share tensor
    auto tensor_base = tensors[i].impl();
    if (phi::DenseTensor::classof(tensor_base.get())) {
      auto *dst_tensor = var->GetMutable<phi::DenseTensor>();
      auto t = std::dynamic_pointer_cast<phi::DenseTensor>(tensor_base);
      *dst_tensor = *t;
    } else if (phi::SelectedRows::classof(tensor_base.get())) {
      auto *dst_tensor = var->GetMutable<phi::SelectedRows>();
      auto t = std::dynamic_pointer_cast<phi::SelectedRows>(tensor_base);
      *dst_tensor = *t;
    }
  }
}

static void ShareTensorsFromScope(
    const std::vector<Tensor *> &tensors,
    const paddle::framework::BlockDesc &global_block,
    paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    // NOTE: In case of setting out_tmp.stop_gradient = True in model code, all
    // parameters before generating out_tmp have no @GRAD, it will raise error
    // because we can't find them in scope. So we skip sharing these vars or
    // var@GRAD if they don't appear in global block.
    auto &name = tensors[i]->name();
    if (name == paddle::framework::kEmptyVarName || name == "Fake_var" ||
        !global_block.HasVar(name)) {
      VLOG(2) << "find tensor name is " << name << ", skip it!";
      continue;
    }
    // NOTE: Here skip not found var is dangerous, if a bug is caused here,
    // the result is grad calculation error, which will be very hidden!
    auto *var = scope->FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(var, paddle::platform::errors::NotFound(
                                     "The output tensor %s is not in "
                                     "RunProgram(Grad)Op'"
                                     "s internal scope.",
                                     name));
    CheckOutputVarStatus(*var, *tensors[i]);
    // share tensor
    // TODO(dev): Determine Tensor type by scope.var
    // auto tensor_base = tensors[i]->impl();
    // if (phi::DenseTensor::classof(tensor_base.get())) {
    if (var->IsType<phi::DenseTensor>()) {
      auto &src_tensor = var->Get<phi::DenseTensor>();
      auto *dst_tensor = const_cast<phi::DenseTensor *>(
          dynamic_cast<const phi::DenseTensor *>(tensors[i]->impl().get()));
      VLOG(2) << "share " << name << " from scope";
      *dst_tensor = src_tensor;
    } else if (var->IsType<phi::SelectedRows>()) {
      // } else if (phi::SelectedRows::classof(tensor_base.get())) {
      auto &src_tensor = var->Get<phi::SelectedRows>();
      auto *dst_tensor = const_cast<phi::SelectedRows *>(
          dynamic_cast<const phi::SelectedRows *>(tensors[i]->impl().get()));
      *dst_tensor = src_tensor;
    }
  }
}

}  // namespace details

inline void RunProgramAPI(
    const std::vector<paddle::experimental::Tensor> &x,
    const std::vector<paddle::experimental::Tensor> &params,
    std::vector<paddle::experimental::Tensor *> &out,     // NOLINT
    std::vector<paddle::framework::Scope *> &step_scope,  // NOLINT
    std::vector<paddle::experimental::Tensor *> &dout,    // NOLINT
    const paddle::framework::AttributeMap &attrs) {
  VLOG(2) << "RunProgramOpKernel Compute";
  auto start_op_index = BOOST_GET_CONST(int64_t, attrs.at("start_op_index"));
  auto end_op_index = BOOST_GET_CONST(int64_t, attrs.at("end_op_index"));
  auto is_test = BOOST_GET_CONST(bool, attrs.at("is_test"));
  auto program_id = BOOST_GET_CONST(int64_t, attrs.at("program_id"));

  // NOTE(chenweihang): In order not to add new variable type, use vector
  // here. Originally, here can use scope directly.
  auto *out_scope_vec = &step_scope;
  PADDLE_ENFORCE_EQ(
      out_scope_vec->size(), 1,
      paddle::platform::errors::InvalidArgument(
          "The OutScope of RunProgramGradOp should only hold one scope."));

  // Step 2. prepare executor and init persistable variables

  // NOTE(Aurelius84): While training some models, forward can be called many
  // times and then apply backpropagation all at once, such as Reinforcement
  // Learning. Tensor data in multi-step training should be saved into single
  // scope separately. Otherwise, the gradients can be miscalculated because
  // always using the Tensor data of the last step in forward.
  paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
  VLOG(2) << "The number of sub scopes before forward: "
          << out_scope_vec->front()->kids().size();
  paddle::framework::Scope &scope = global_inner_scope->NewScope();

  // share input_vars & parameters into scope
  details::ShareTensorsIntoScope(x, &scope);
  details::ShareTensorsIntoScope(params, &scope);

  auto *global_block =
      BOOST_GET_CONST(paddle::framework::BlockDesc *, attrs.at("global_block"));
  const auto &place = egr::Controller::Instance().GetExpectedPlace();

  if (end_op_index > start_op_index) {
    auto input_names = details::GetTensorsName(x);
    auto output_names = details::GetTensorsName(out);
    auto dout_names = details::GetTensorsName(dout);
    auto *program = global_block->Program();

    auto cache_info = paddle::framework::GetExecutorInfoFromCache(
        *program, place, start_op_index, end_op_index,
        /*is_grad=*/false, program_id, &scope);
    auto &parallel_executor = cache_info.first;
    // all out_vars are skip_eager_var
    auto &skip_eager_delete_vars =
        paddle::framework::ExecutorInfoCache::Instance().SkipEagerDeleteVars(
            program_id, false);
    if (cache_info.second /*is_new_created*/) {
      parallel_executor->SkipMemoryReuse(/*scope_idx=*/0, input_names);
      skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                    output_names.begin(), output_names.end());
      skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                    dout_names.begin(), dout_names.end());
      paddle::framework::details::ParseSafeEagerDeletionSkipVars(
          *program, end_op_index, output_names, &skip_eager_delete_vars);
    }

    // Step 3. run ops
    parallel_executor->RunWithoutFetch(skip_eager_delete_vars);
  }
  // Step 4. Get Output
  details::ShareTensorsFromScope(out, *global_block, &scope);
  details::ShareTensorsFromScope(dout, *global_block, &scope);

  // Debug info: scope info when run end
  VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(out_scope_vec->front());
  // Step 5. Drop all children scopes while testing.
  if (is_test) {
    out_scope_vec->front()->DropKids();
  }
  VLOG(2) << "The number of sub scopes after forward: "
          << out_scope_vec->front()->kids().size();
  // #ifdef PADDLE_WITH_MKLDNN
  //     if (FLAGS_use_mkldnn) paddle::platform::DontClearMKLDNNCache(place);
  // #endif
}

inline void RunProgramGradAPI(
    const std::vector<paddle::experimental::Tensor> &x,
    const std::vector<paddle::experimental::Tensor> &params,
    const std::vector<paddle::experimental::Tensor> &out_grad,
    const std::vector<paddle::framework::Scope *> &step_scope,  // NOLINT
    const paddle::framework::AttributeMap &attrs,
    std::vector<paddle::experimental::Tensor *> &x_grad,      // NOLINT
    std::vector<paddle::experimental::Tensor *> &params_grad  // NOLINT
    ) {
  // if all output vars are set to stop_gradient, grad op no need to executed
  if (x_grad.empty() && params_grad.empty()) return;

  // TODO(dev): Remove this line hard code. And need to deal with the out_grad
  // name problem.
  // const_cast<paddle::experimental::Tensor &>(out_grad[0])
  //     .set_name("matmul_v2_0.tmp_0@GRAD");

  auto *global_block =
      BOOST_GET_CONST(paddle::framework::BlockDesc *, attrs.at("global_block"));
  auto orig_end_op_index = BOOST_GET_CONST(int64_t, attrs.at("end_op_index"));

  auto program_id = BOOST_GET_CONST(int64_t, attrs.at("program_id"));
  // NOTE: skip `shape` and `fill_constant` op created by
  // fluid.backward.gradients, one forward output will generate one `shape`
  // and `fill_constant`
  int64_t start_op_index = orig_end_op_index + (out_grad.size() * 2);
  int64_t end_op_index = global_block->OpSize();

  auto *out_scope_vec = &step_scope;
  PADDLE_ENFORCE_EQ(
      out_scope_vec->size(), 1,
      paddle::platform::errors::InvalidArgument(
          "The OutScope of RunProgramGradOp should only hold one scope."));

  paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
  auto sub_scope_num = global_inner_scope->kids().size();
  VLOG(2) << "The number of sub scopes before backward: " << sub_scope_num;
  PADDLE_ENFORCE_GT(sub_scope_num, 0,
                    paddle::platform::errors::InvalidArgument(
                        "The OutScope of RunProgramGradOp should hold at "
                        "least one sub scope."));

  auto &scope = *(global_inner_scope->kids().front());
  const auto &place = egr::Controller::Instance().GetExpectedPlace();

  if (end_op_index > start_op_index) {
    auto out_grad_names = details::GetTensorsName(out_grad);
    // NOTE: after PR22939 [Add double grad] merged, the grad op maker's
    //   SetOutput will set to None if the input var stop_gradient=True,
    //   it will cause an NotFound error when ctx.OutputNames() is called
    std::vector<std::string> x_grad_names;
    std::vector<std::string> param_grad_names;
    if (!x_grad.empty()) {
      x_grad_names = details::GetTensorsName(x_grad);
    }
    if (!params_grad.empty()) {
      param_grad_names = details::GetTensorsName(params_grad);
    }

    // Step 2. prepare executor and scope
    auto *program = global_block->Program();
    auto cache_info = paddle::framework::GetExecutorInfoFromCache(
        *program, place, start_op_index, end_op_index,
        /*is_grad*/ true, program_id, &scope);
    auto &parallel_executor = cache_info.first;

    auto &skip_eager_delete_vars =
        paddle::framework::ExecutorInfoCache::Instance().SkipEagerDeleteVars(
            program_id, true);
    if (cache_info.second /*is_new_created*/) {
      parallel_executor->SkipMemoryReuse(/*scope_idx=*/0, out_grad_names);

      skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
                                    x_grad_names.begin(), x_grad_names.end());
      paddle::framework::details::AppendSkipDeletionVars(
          param_grad_names, &skip_eager_delete_vars);
    }

    details::ShareTensorsIntoScope(out_grad, &scope);
    // Debug info: scope info when run end
    VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(out_scope_vec->front());

    // Step 3. run ops
    parallel_executor->RunWithoutFetch(
        /*skip_eager_delete_vars=*/skip_eager_delete_vars);
  }

  // Step 4. get outputs
  details::ShareTensorsFromScope(x_grad, *global_block, &scope);
  details::ShareTensorsFromScope(params_grad, *global_block, &scope);

  // Step5. drop current scope
  // global_inner_scope->DeleteScope(&scope);
  VLOG(2) << "The number of sub scopes after backward: "
          << global_inner_scope->kids().size();
}

class GradNodeRunProgram : public egr::GradNodeBase {
 public:
  GradNodeRunProgram(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
      : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}

  ~GradNodeRunProgram() override = default;
  // Functor: perform backward computations
  virtual std::vector<std::vector<paddle::experimental::Tensor>> operator()(
      const std::vector<std::vector<paddle::experimental::Tensor>> &grads)
      override {
    VLOG(3) << "Running Eager Backward Node: GradNodeRunProgram";
    PADDLE_ENFORCE_EQ(
        grads.size(), 1,
        paddle::platform::errors::InvalidArgument(
            "The out_grads.size() of RunProgramGradOp should be equal to 1."));

    VLOG(3) << "out_grads[0].size() : " << grads[0].size();
    std::vector<paddle::experimental::Tensor> x_grad;
    std::vector<paddle::experimental::Tensor> params_grad;
    ConstructGradTensors(x_, &x_grad);
    ConstructGradTensors(params_, &params_grad);
    std::vector<paddle::experimental::Tensor *> x_grad_ptr;
    std::vector<paddle::experimental::Tensor *> params_grad_ptr;
    for (auto &i : x_grad) {
      x_grad_ptr.emplace_back(&i);
    }
    for (auto &i : params_grad) {
      params_grad_ptr.emplace_back(&i);
    }

    // auto x_grad_ptr = ConstructGradTensors(x_);
    // auto params_grad_ptr = ConstructGradTensors(params_);

    PADDLE_ENFORCE_EQ(
        grads[0].size(), fwd_out_names_.size(),
        paddle::platform::errors::InvalidArgument(
            "The grads[0].size() and fwd_out_names_.size() should be equal."));
    for (size_t i = 0; i < fwd_out_names_.size(); ++i) {
      const_cast<paddle::experimental::Tensor &>(grads[0][i])
          .set_name(fwd_out_names_[i] + "@GRAD");
    }

    RunProgramGradAPI(x_, params_, grads[0], step_scope_, attrs_, x_grad_ptr,
                      params_grad_ptr);
    VLOG(3) << "End Eager Backward Node: GradNodeRunProgram";
    return {x_grad, params_grad};
    // return {x_grad, details::DereferenceTensors(params_grad_ptr)};
  }

  // SetAttrMap
  void SetAttrMap(const paddle::framework::AttributeMap &attrs) {
    attrs_ = attrs;
  }

  void SetFwdX(const std::vector<paddle::experimental::Tensor> &tensors) {
    x_ = tensors;
  }

  void SetFwdParams(const std::vector<paddle::experimental::Tensor> &tensors) {
    params_ = tensors;
  }

  void SetStepScope(const std::vector<paddle::framework::Scope *> &scopes) {
    step_scope_ = scopes;
  }

  void SetFwdOutNames(std::vector<std::string> out_names) {
    fwd_out_names_ = out_names;
  }

 protected:
  void ConstructGradTensors(
      const std::vector<paddle::experimental::Tensor> &fwd_tensors,
      std::vector<paddle::experimental::Tensor> *grad_tensors) {
    // TODO(dev): Need an elegant way to determine inforamtion of grad_tensor,
    // such as: name, tensor type(DenseTensor or SelectedRows).
    VLOG(3) << "fwd_tensors.size(): " << fwd_tensors.size();
    for (auto &fwd_t : fwd_tensors) {
      grad_tensors->emplace_back(fwd_t.impl());
      auto &grad_t = grad_tensors->back();
      grad_t.set_name(fwd_t.name() + "@GRAD");
    }
  }

  void ConstructGradTensors(
      const std::vector<paddle::experimental::Tensor> &fwd_tensors) {
    VLOG(3) << "fwd_tensors.size(): " << fwd_tensors.size();
    for (auto &fwd_t : fwd_tensors) {
      auto grad_tesnor = egr::EagerUtils::unsafe_autograd_meta(fwd_t)->Grad();
      grad_tesnor.set_name(fwd_t.name() + "@GRAD");
    }
  }

 private:
  // TensorWrappers
  std::vector<paddle::experimental::Tensor> x_;
  std::vector<paddle::experimental::Tensor> params_;
  std::vector<paddle::framework::Scope *> step_scope_;

  std::vector<std::string> fwd_out_names_;

  // Attribute Map
  paddle::framework::AttributeMap attrs_;
};