run_program_op_node.h 20.9 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/eager/api/utils/global_utils.h"
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/tensor_wrapper.h"
#include "paddle/fluid/operators/run_program_op.h"
#include "paddle/fluid/platform/enforce.h"

namespace details {
using Tensor = paddle::experimental::Tensor;

static std::vector<Tensor> DereferenceTensors(
    const std::vector<Tensor *> &tensor_ptr) {
  std::vector<Tensor> res;
  for (auto *t : tensor_ptr) {
    res.emplace_back(*t);
  }
  return res;
}

static std::vector<std::string> GetTensorsName(const std::vector<Tensor> &ins) {
  std::vector<std::string> in_names;
  for (auto &in_t : ins) {
    in_names.emplace_back(in_t.name());
  }
  return in_names;
}

static std::vector<std::string> GetTensorsName(
    const std::vector<Tensor *> &ins) {
  std::vector<std::string> in_names;
  for (auto *in_t : ins) {
    in_names.emplace_back(in_t->name());
  }
  return in_names;
}

static void CheckInputVarStatus(const Tensor &tensor) {
53 54
  PADDLE_ENFORCE_EQ(tensor.defined() && tensor.is_dense_tensor(),
                    true,
55 56 57 58 59
                    paddle::platform::errors::InvalidArgument(
                        "The input tensor %s of "
                        "RunProgram(Grad)Op holds "
                        "wrong type. Expect type is DenseTensor.",
                        tensor.name()));
0
0x45f 已提交
60

61 62
  PADDLE_ENFORCE_EQ(tensor.initialized(),
                    true,
0
0x45f 已提交
63 64 65 66 67 68 69 70 71 72
                    paddle::platform::errors::InvalidArgument(
                        "The tensor in input tensor %s of "
                        "RunProgram(Grad)Op "
                        "is not initialized.",
                        tensor.name()));
}

static void CheckOutputVarStatus(const paddle::framework::Variable &src_var,
                                 const Tensor &dst_tensor) {
  auto name = dst_tensor.name();
73 74
  PADDLE_ENFORCE_EQ(dst_tensor.defined(),
                    true,
0
0x45f 已提交
75 76 77
                    paddle::platform::errors::InvalidArgument(
                        "dst_tensor shall be defined."));

78
  if (dst_tensor.is_dense_tensor()) {
0
0x45f 已提交
79
    auto &src_tensor = src_var.Get<phi::DenseTensor>();
80 81
    PADDLE_ENFORCE_EQ(phi::DenseTensor::classof(&src_tensor),
                      true,
0
0x45f 已提交
82 83 84 85 86
                      paddle::platform::errors::InvalidArgument(
                          "The output tensor %s get from "
                          "RunProgram(Grad)Op's internal scope holds "
                          "wrong type. Expect type is DenseTensor",
                          name));
87 88
    PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                      true,
0
0x45f 已提交
89 90 91 92 93
                      paddle::platform::errors::InvalidArgument(
                          "The tensor in output tensor %s get from "
                          "RunProgram(Grad)Op's internal "
                          "scope is not initialized.",
                          name));
94
  } else if (dst_tensor.is_selected_rows()) {
0
0x45f 已提交
95
    auto &src_tensor = src_var.Get<phi::SelectedRows>();
96 97
    PADDLE_ENFORCE_EQ(phi::SelectedRows::classof(&src_tensor),
                      true,
0
0x45f 已提交
98 99 100 101 102
                      paddle::platform::errors::InvalidArgument(
                          "The output tensodfr %s get from "
                          "RunProgram(Grad)Op's internal scope holds "
                          "wrong type. Expect type is SelectedRows",
                          name));
103 104
    PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                      true,
0
0x45f 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
                      paddle::platform::errors::InvalidArgument(
                          "The tensor in output tensor %s get from "
                          "RunProgram(Grad)Op's "
                          "internal scope is not initialized.",
                          name));

  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The RunProgram(Grad)Op only support output "
        "variable of type LoDTensor or SelectedRows",
        name));
  }
}

static void ShareTensorsIntoScope(const std::vector<Tensor> &tensors,
                                  paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto name = tensors[i].name();
123
    if (name == "Fake_var" || !tensors[i].initialized()) {
0
0x45f 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
      continue;
    }
    auto *var = scope->Var(name);
    CheckInputVarStatus(tensors[i]);
    // share tensor
    auto tensor_base = tensors[i].impl();
    if (phi::DenseTensor::classof(tensor_base.get())) {
      auto *dst_tensor = var->GetMutable<phi::DenseTensor>();
      auto t = std::dynamic_pointer_cast<phi::DenseTensor>(tensor_base);
      *dst_tensor = *t;
    } else if (phi::SelectedRows::classof(tensor_base.get())) {
      auto *dst_tensor = var->GetMutable<phi::SelectedRows>();
      auto t = std::dynamic_pointer_cast<phi::SelectedRows>(tensor_base);
      *dst_tensor = *t;
    }
  }
}

static void ShareTensorsFromScope(
    const std::vector<Tensor *> &tensors,
    const paddle::framework::BlockDesc &global_block,
    paddle::framework::Scope *scope) {
  for (size_t i = 0; i < tensors.size(); ++i) {
    // NOTE: In case of setting out_tmp.stop_gradient = True in model code, all
    // parameters before generating out_tmp have no @GRAD, it will raise error
    // because we can't find them in scope. So we skip sharing these vars or
    // var@GRAD if they don't appear in global block.
    auto &name = tensors[i]->name();
    if (name == paddle::framework::kEmptyVarName || name == "Fake_var" ||
        !global_block.HasVar(name)) {
      VLOG(2) << "find tensor name is " << name << ", skip it!";
      continue;
    }
    // NOTE: Here skip not found var is dangerous, if a bug is caused here,
    // the result is grad calculation error, which will be very hidden!
    auto *var = scope->FindVar(name);
160 161 162 163 164 165
    PADDLE_ENFORCE_NOT_NULL(
        var,
        paddle::platform::errors::NotFound("The output tensor %s is not in "
                                           "RunProgram(Grad)Op'"
                                           "s internal scope.",
                                           name));
0
0x45f 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    CheckOutputVarStatus(*var, *tensors[i]);
    // share tensor
    if (var->IsType<phi::DenseTensor>()) {
      auto &src_tensor = var->Get<phi::DenseTensor>();
      auto *dst_tensor = const_cast<phi::DenseTensor *>(
          dynamic_cast<const phi::DenseTensor *>(tensors[i]->impl().get()));
      VLOG(2) << "share " << name << " from scope";
      *dst_tensor = src_tensor;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto &src_tensor = var->Get<phi::SelectedRows>();
      auto *dst_tensor = const_cast<phi::SelectedRows *>(
          dynamic_cast<const phi::SelectedRows *>(tensors[i]->impl().get()));
      *dst_tensor = src_tensor;
    }
  }
}

}  // namespace details

inline void RunProgramAPI(
    const std::vector<paddle::experimental::Tensor> &x,
    const std::vector<paddle::experimental::Tensor> &params,
    std::vector<paddle::experimental::Tensor *> &out,     // NOLINT
    std::vector<paddle::framework::Scope *> &step_scope,  // NOLINT
    std::vector<paddle::experimental::Tensor *> &dout,    // NOLINT
    const paddle::framework::AttributeMap &attrs) {
  VLOG(2) << "RunProgramOpKernel Compute";
  auto start_op_index = BOOST_GET_CONST(int64_t, attrs.at("start_op_index"));
  auto end_op_index = BOOST_GET_CONST(int64_t, attrs.at("end_op_index"));
0
0x45f 已提交
195 196 197 198 199 200 201
  // In the original run_program OP, the default value of the is_test
  // attribute is false, we should check if there is is_test parameter
  // in attrs
  auto is_test = false;
  if (attrs.count("is_test")) {
    is_test = BOOST_GET_CONST(bool, attrs.at("is_test"));
  }
0
0x45f 已提交
202 203 204 205 206 207
  auto program_id = BOOST_GET_CONST(int64_t, attrs.at("program_id"));

  // NOTE(chenweihang): In order not to add new variable type, use vector
  // here. Originally, here can use scope directly.
  auto *out_scope_vec = &step_scope;
  PADDLE_ENFORCE_EQ(
208 209
      out_scope_vec->size(),
      1,
0
0x45f 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
      paddle::platform::errors::InvalidArgument(
          "The OutScope of RunProgramGradOp should only hold one scope."));

  // Step 2. prepare executor and init persistable variables
  // NOTE(Aurelius84): While training some models, forward can be called many
  // times and then apply backpropagation all at once, such as Reinforcement
  // Learning. Tensor data in multi-step training should be saved into single
  // scope separately. Otherwise, the gradients can be miscalculated because
  // always using the Tensor data of the last step in forward.
  paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
  VLOG(2) << "The number of sub scopes before forward: "
          << out_scope_vec->front()->kids().size();
  paddle::framework::Scope &scope = global_inner_scope->NewScope();

  // share input_vars & parameters into scope
  details::ShareTensorsIntoScope(x, &scope);
  details::ShareTensorsIntoScope(params, &scope);

  auto *global_block =
      BOOST_GET_CONST(paddle::framework::BlockDesc *, attrs.at("global_block"));
  const auto &place = egr::Controller::Instance().GetExpectedPlace();

  if (end_op_index > start_op_index) {
    auto input_names = details::GetTensorsName(x);
    auto output_names = details::GetTensorsName(out);
    auto dout_names = details::GetTensorsName(dout);
    auto *program = global_block->Program();

238 239 240 241 242 243 244 245
    auto cache_info =
        paddle::framework::GetExecutorInfoFromCache(*program,
                                                    place,
                                                    start_op_index,
                                                    end_op_index,
                                                    /*is_grad=*/false,
                                                    program_id,
                                                    &scope);
0
0x45f 已提交
246 247 248 249 250 251 252 253
    auto &parallel_executor = cache_info.first;
    // all out_vars are skip_eager_var
    auto &skip_eager_delete_vars =
        paddle::framework::ExecutorInfoCache::Instance().SkipEagerDeleteVars(
            program_id, false);
    if (cache_info.second /*is_new_created*/) {
      parallel_executor->SkipMemoryReuse(/*scope_idx=*/0, input_names);
      skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
254 255 256 257
                                    output_names.begin(),
                                    output_names.end());
      skip_eager_delete_vars.insert(
          skip_eager_delete_vars.end(), dout_names.begin(), dout_names.end());
0
0x45f 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
      paddle::framework::details::ParseSafeEagerDeletionSkipVars(
          *program, end_op_index, output_names, &skip_eager_delete_vars);
    }

    // Step 3. run ops
    parallel_executor->RunWithoutFetch(skip_eager_delete_vars);
  }
  // Step 4. Get Output
  details::ShareTensorsFromScope(out, *global_block, &scope);
  details::ShareTensorsFromScope(dout, *global_block, &scope);

  // Debug info: scope info when run end
  VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(out_scope_vec->front());
  // Step 5. Drop all children scopes while testing.
  if (is_test) {
    out_scope_vec->front()->DropKids();
  }
  VLOG(2) << "The number of sub scopes after forward: "
          << out_scope_vec->front()->kids().size();
277 278 279
#ifdef PADDLE_WITH_MKLDNN
  if (FLAGS_use_mkldnn) paddle::platform::DontClearMKLDNNCache(place);
#endif
0
0x45f 已提交
280 281 282 283 284 285 286 287 288 289
}

inline void RunProgramGradAPI(
    const std::vector<paddle::experimental::Tensor> &x,
    const std::vector<paddle::experimental::Tensor> &params,
    const std::vector<paddle::experimental::Tensor> &out_grad,
    const std::vector<paddle::framework::Scope *> &step_scope,  // NOLINT
    const paddle::framework::AttributeMap &attrs,
    std::vector<paddle::experimental::Tensor *> &x_grad,      // NOLINT
    std::vector<paddle::experimental::Tensor *> &params_grad  // NOLINT
290
) {
0
0x45f 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  // if all output vars are set to stop_gradient, grad op no need to executed
  if (x_grad.empty() && params_grad.empty()) return;

  auto *global_block =
      BOOST_GET_CONST(paddle::framework::BlockDesc *, attrs.at("global_block"));
  auto orig_end_op_index = BOOST_GET_CONST(int64_t, attrs.at("end_op_index"));

  auto program_id = BOOST_GET_CONST(int64_t, attrs.at("program_id"));
  // NOTE: skip `shape` and `fill_constant` op created by
  // fluid.backward.gradients, one forward output will generate one `shape`
  // and `fill_constant`
  int64_t start_op_index = orig_end_op_index + (out_grad.size() * 2);
  int64_t end_op_index = global_block->OpSize();

  auto *out_scope_vec = &step_scope;
  PADDLE_ENFORCE_EQ(
307 308
      out_scope_vec->size(),
      1,
0
0x45f 已提交
309 310 311 312 313 314
      paddle::platform::errors::InvalidArgument(
          "The OutScope of RunProgramGradOp should only hold one scope."));

  paddle::framework::Scope *global_inner_scope = out_scope_vec->front();
  auto sub_scope_num = global_inner_scope->kids().size();
  VLOG(2) << "The number of sub scopes before backward: " << sub_scope_num;
315 316
  PADDLE_ENFORCE_GT(sub_scope_num,
                    0,
0
0x45f 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
                    paddle::platform::errors::InvalidArgument(
                        "The OutScope of RunProgramGradOp should hold at "
                        "least one sub scope."));

  auto &scope = *(global_inner_scope->kids().front());
  const auto &place = egr::Controller::Instance().GetExpectedPlace();

  if (end_op_index > start_op_index) {
    auto out_grad_names = details::GetTensorsName(out_grad);
    // NOTE: after PR22939 [Add double grad] merged, the grad op maker's
    //   SetOutput will set to None if the input var stop_gradient=True,
    //   it will cause an NotFound error when ctx.OutputNames() is called
    std::vector<std::string> x_grad_names;
    std::vector<std::string> param_grad_names;
    if (!x_grad.empty()) {
      x_grad_names = details::GetTensorsName(x_grad);
    }
    if (!params_grad.empty()) {
      param_grad_names = details::GetTensorsName(params_grad);
    }

    // Step 2. prepare executor and scope
    auto *program = global_block->Program();
340 341 342 343 344 345 346 347
    auto cache_info =
        paddle::framework::GetExecutorInfoFromCache(*program,
                                                    place,
                                                    start_op_index,
                                                    end_op_index,
                                                    /*is_grad*/ true,
                                                    program_id,
                                                    &scope);
0
0x45f 已提交
348 349 350 351 352 353 354 355 356
    auto &parallel_executor = cache_info.first;

    auto &skip_eager_delete_vars =
        paddle::framework::ExecutorInfoCache::Instance().SkipEagerDeleteVars(
            program_id, true);
    if (cache_info.second /*is_new_created*/) {
      parallel_executor->SkipMemoryReuse(/*scope_idx=*/0, out_grad_names);

      skip_eager_delete_vars.insert(skip_eager_delete_vars.end(),
357 358
                                    x_grad_names.begin(),
                                    x_grad_names.end());
0
0x45f 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
      paddle::framework::details::AppendSkipDeletionVars(
          param_grad_names, &skip_eager_delete_vars);
    }

    details::ShareTensorsIntoScope(out_grad, &scope);
    // Debug info: scope info when run end
    VLOG(3) << paddle::framework::GenScopeTreeDebugInfo(out_scope_vec->front());

    // Step 3. run ops
    parallel_executor->RunWithoutFetch(
        /*skip_eager_delete_vars=*/skip_eager_delete_vars);
  }

  // Step 4. get outputs
  details::ShareTensorsFromScope(x_grad, *global_block, &scope);
  details::ShareTensorsFromScope(params_grad, *global_block, &scope);

  // Step5. drop current scope
377
  global_inner_scope->DeleteScope(&scope);
0
0x45f 已提交
378 379 380 381 382 383 384 385 386 387 388
  VLOG(2) << "The number of sub scopes after backward: "
          << global_inner_scope->kids().size();
}

class GradNodeRunProgram : public egr::GradNodeBase {
 public:
  GradNodeRunProgram(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
      : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}

  ~GradNodeRunProgram() override = default;
  // Functor: perform backward computations
389 390 391 392
  virtual paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                               egr::kSlotSmallVectorSize>
  operator()(paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                                  egr::kSlotSmallVectorSize> &grads,  // NOLINT
393 394
             bool create_graph,
             bool is_new_grad) override {
0
0x45f 已提交
395
    VLOG(3) << "Running Eager Backward Node: GradNodeRunProgram";
396 397 398
    paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                         egr::kSlotSmallVectorSize>
        hooked_grads = GradNodeRunProgram::ApplyGradientHooks(grads);
399 400
    PADDLE_ENFORCE_EQ(hooked_grads.size(),
                      1,
401 402 403
                      paddle::platform::errors::InvalidArgument(
                          "The hooked_grads.size() of RunProgramGradOp should "
                          "be equal to 1."));
0
0x45f 已提交
404

W
wanghuancoder 已提交
405 406
    egr::EagerUtils::FillZeroForEmptyOptionalGradInput(&hooked_grads[0],
                                                       this->InputMeta()[0]);
407
    VLOG(3) << "hooked_grads[0].size() : " << hooked_grads[0].size();
0
0x45f 已提交
408 409
    std::vector<paddle::experimental::Tensor> x_grad;
    std::vector<paddle::experimental::Tensor> params_grad;
410 411
    ConstructXGradTensors(x_, &x_grad);
    ConstructParamGradTensors(params_, &params_grad);
0
0x45f 已提交
412 413 414 415 416 417
    std::vector<paddle::experimental::Tensor *> x_grad_ptr;
    std::vector<paddle::experimental::Tensor *> params_grad_ptr;
    for (auto &i : x_grad) {
      x_grad_ptr.emplace_back(&i);
    }
    for (auto &i : params_grad) {
0
0x45f 已提交
418 419 420
      if (i.defined()) {
        params_grad_ptr.emplace_back(&i);
      }
0
0x45f 已提交
421 422
    }

423 424
    PADDLE_ENFORCE_EQ(hooked_grads[0].size(),
                      fwd_out_names_.size(),
425 426 427
                      paddle::platform::errors::InvalidArgument(
                          "The hooked_grads[0].size() and "
                          "fwd_out_names_.size() should be equal."));
0
0x45f 已提交
428
    for (size_t i = 0; i < fwd_out_names_.size(); ++i) {
429
      hooked_grads[0][i].set_name(fwd_out_names_[i] + "@GRAD");
0
0x45f 已提交
430
    }
431 432 433 434 435 436 437
    RunProgramGradAPI(x_,
                      params_,
                      hooked_grads[0],
                      step_scope_,
                      attrs_,
                      x_grad_ptr,
                      params_grad_ptr);
0
0x45f 已提交
438 439 440 441
    VLOG(3) << "End Eager Backward Node: GradNodeRunProgram";
    return {x_grad, params_grad};
  }

442 443
  void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; }

0
0x45f 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
  // SetAttrMap
  void SetAttrMap(const paddle::framework::AttributeMap &attrs) {
    attrs_ = attrs;
  }

  void SetFwdX(const std::vector<paddle::experimental::Tensor> &tensors) {
    x_ = tensors;
  }

  void SetFwdParams(const std::vector<paddle::experimental::Tensor> &tensors) {
    params_ = tensors;
  }

  void SetStepScope(const std::vector<paddle::framework::Scope *> &scopes) {
    step_scope_ = scopes;
  }

  void SetFwdOutNames(std::vector<std::string> out_names) {
    fwd_out_names_ = out_names;
  }

 protected:
466 467 468
  void ConstructXGradTensors(
      const std::vector<paddle::experimental::Tensor> &x,
      std::vector<paddle::experimental::Tensor> *x_grad) {
0
0x45f 已提交
469 470
    // TODO(dev): Need an elegant way to determine inforamtion of grad_tensor,
    // such as: name, tensor type(DenseTensor or SelectedRows).
471 472 473 474 475
    for (auto &t : x) {
      if (t.is_dense_tensor()) {
        x_grad->emplace_back(std::make_shared<phi::DenseTensor>());
      } else if (t.is_selected_rows()) {
        x_grad->emplace_back(std::make_shared<phi::SelectedRows>());
476
      }
477
      x_grad->back().set_name(t.name() + "@GRAD");
0
0x45f 已提交
478 479 480
    }
  }

481 482 483 484 485
  void ConstructParamGradTensors(
      const std::vector<paddle::experimental::Tensor> &param,
      std::vector<paddle::experimental::Tensor> *param_grad) {
    for (auto &t : param) {
      auto t_grad = egr::EagerUtils::unsafe_autograd_meta(t)->Grad();
486 487 488
      // In eager mode, the number of param_grad should be the same as
      // param, so here an empty Tensor is added for the param with
      // stop_gradient=True
0
0x45f 已提交
489
      if (!t_grad.defined()) {
490 491 492 493 494 495 496
        param_grad->emplace_back();
      } else if (t_grad.is_dense_tensor()) {
        param_grad->emplace_back(std::make_shared<phi::DenseTensor>());
      } else if (t_grad.is_selected_rows()) {
        param_grad->emplace_back(std::make_shared<phi::SelectedRows>());
      }
      param_grad->back().set_name(t.name() + "@GRAD");
0
0x45f 已提交
497 498 499
    }
  }

500 501 502 503 504 505
  std::shared_ptr<GradNodeBase> Copy() const override {
    auto copied_node =
        std::shared_ptr<GradNodeRunProgram>(new GradNodeRunProgram(*this));
    return copied_node;
  }

0
0x45f 已提交
506 507 508 509 510 511 512 513 514 515 516
 private:
  // TensorWrappers
  std::vector<paddle::experimental::Tensor> x_;
  std::vector<paddle::experimental::Tensor> params_;
  std::vector<paddle::framework::Scope *> step_scope_;

  std::vector<std::string> fwd_out_names_;

  // Attribute Map
  paddle::framework::AttributeMap attrs_;
};