mul_op.cc 9.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include <memory>
16
#include <string>
17
#include <unordered_map>
18
#include <vector>
19

20
#include "paddle/fluid/framework/op_registry.h"
P
Physher 已提交
21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
24

C
Chen Weihang 已提交
25 26 27 28
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
29 30 31
namespace paddle {
namespace operators {

32
using framework::OpKernelType;
D
dongzhihong 已提交
33 34
using framework::Tensor;

35 36 37
constexpr int kMULMKLDNNINT8 = 1;
constexpr int kMULMKLDNNFP32 = 2;

38
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
39
 public:
40 41
  using framework::OperatorWithKernel::OperatorWithKernel;

P
Physher 已提交
42 43
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
44
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
P
Physher 已提交
45

J
jiahongyu 已提交
46 47 48 49
#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      int customized_type_value =
          framework::OpKernelType::kDefaultCustomizedTypeValue;
50 51
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
P
Physher 已提交
52
        customized_type_value = kMULMKLDNNINT8;
53 54 55 56 57 58
      } else if (input_data_type ==
                     framework::DataTypeTrait<
                         paddle::platform::bfloat16>::DataType() ||
                 input_data_type ==
                     framework::DataTypeTrait<float>::DataType()) {
        customized_type_value = kMULMKLDNNFP32;
P
Physher 已提交
59
      }
J
jiahongyu 已提交
60 61 62 63 64
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN,
                                     customized_type_value);
P
Physher 已提交
65 66 67
    }
#endif

J
jiahongyu 已提交
68
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
P
Physher 已提交
69
  }
70 71
};

D
dongzhihong 已提交
72
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
73
 public:
Y
Yu Yang 已提交
74
  void Make() override {
C
caoying03 已提交
75 76 77
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
F
WIP  
fengjiayi 已提交
78
    AddAttr<int>(
F
fengjiayi 已提交
79
        "x_num_col_dims",
C
caoying03 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
95
        )DOC")
F
WIP  
fengjiayi 已提交
96
        .SetDefault(1)
F
fengjiayi 已提交
97
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
98
    AddAttr<int>(
F
fengjiayi 已提交
99
        "y_num_col_dims",
C
caoying03 已提交
100 101 102 103
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
104
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
105
        )DOC")
F
WIP  
fengjiayi 已提交
106
        .SetDefault(1)
F
fengjiayi 已提交
107
        .EqualGreaterThan(1);
108
    AddComment(R"DOC(
C
caoying03 已提交
109
Mul Operator.
K
kexinzhao 已提交
110

C
caoying03 已提交
111
This operator is used to perform matrix multiplication for input $X$ and $Y$.
112

113 114
The equation is:

C
caoying03 已提交
115
$$Out = X * Y$$
116

C
caoying03 已提交
117 118
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
119

120 121 122 123
)DOC");
  }
};

C
chengduo 已提交
124 125
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
126
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
127
      const override {
128 129
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
130 131 132
  }
};

133
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
134 135 136
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

137 138 139 140
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

J
jiahongyu 已提交
141 142 143 144
#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      int customized_type_value =
          framework::OpKernelType::kDefaultCustomizedTypeValue;
145 146 147 148 149 150 151 152 153 154
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
        customized_type_value = kMULMKLDNNINT8;
      } else if (input_data_type ==
                     framework::DataTypeTrait<
                         paddle::platform::bfloat16>::DataType() ||
                 input_data_type ==
                     framework::DataTypeTrait<float>::DataType()) {
        customized_type_value = kMULMKLDNNFP32;
      }
J
jiahongyu 已提交
155 156 157 158 159
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN,
                                     customized_type_value);
160 161 162
    }
#endif

J
jiahongyu 已提交
163
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
164
  }
D
dongzhihong 已提交
165 166
};

H
hong 已提交
167 168
template <typename T>
class MulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
169
 public:
H
hong 已提交
170
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
171 172

 protected:
173
  void Apply(GradOpPtr<T> retv) const override {
S
sneaxiy 已提交
174
    retv->SetType("mul_grad");
H
hong 已提交
175 176 177 178 179 180
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
181 182 183
  }
};

184 185 186 187 188
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
189 190 191
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "mul");
    OP_INOUT_CHECK(ctx->HasInput("DOut"), "Input", "DOut", "mul");
192

L
lvmengsi 已提交
193 194
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
195 196 197
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
198 199
      ctx->ShareDim("X", "DX");
    }
200
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
201 202 203 204 205
      ctx->ShareDim("Y", "DY");
    }
  }
};

H
hong 已提交
206 207
template <typename T>
class MulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
208
 public:
H
hong 已提交
209
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
210 211

 protected:
212
  void Apply(GradOpPtr<T> retv) const override {
213 214
    retv->SetType("mul_grad_grad");

H
hong 已提交
215 216 217 218 219
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
220

H
hong 已提交
221 222
    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddw = this->OutputGrad(framework::GradVarName("Y"));
223

L
lvmengsi 已提交
224
    if (!ddx.empty() || !ddw.empty()) {
H
hong 已提交
225
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
226
    }
227 228 229 230
    retv->SetOutput(
        "DX", ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));
231

H
hong 已提交
232
    retv->SetAttrMap(this->Attrs());
233 234 235
  }
};

236 237 238
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
239
namespace ops = paddle::operators;
240 241
DECLARE_INFER_SHAPE_FUNCTOR(mul,
                            MulInferShapeFunctor,
C
Chen Weihang 已提交
242
                            PD_INFER_META(phi::MatmulWithFlattenInferMeta));
243 244 245 246
REGISTER_OPERATOR(mul,
                  ops::MulOp,
                  ops::MulOpMaker,
                  ops::MulOpInferVarType,
H
hong 已提交
247
                  ops::MulOpGradMaker<paddle::framework::OpDesc>,
C
Chen Weihang 已提交
248 249
                  ops::MulOpGradMaker<paddle::imperative::OpBase>,
                  MulInferShapeFunctor);
P
Physher 已提交
250

251 252
DECLARE_INFER_SHAPE_FUNCTOR(mul_grad,
                            MulGradInferShapeFunctor,
C
Chen Weihang 已提交
253
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
254 255
REGISTER_OPERATOR(mul_grad,
                  ops::MulGradOp,
H
hong 已提交
256
                  ops::MulDoubleGradMaker<paddle::framework::OpDesc>,
C
Chen Weihang 已提交
257 258
                  ops::MulDoubleGradMaker<paddle::imperative::OpBase>,
                  MulGradInferShapeFunctor);
P
Physher 已提交
259

260
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);