cpu_quantize_pass.cc 31.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"
W
wanghuancoder 已提交
16

17
#include <sstream>
18 19
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

21
#include "paddle/fluid/platform/mkldnn_helper.h"
22 23 24 25 26 27
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

28 29 30
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
using string::PrettyLogDetail;

31 32 33 34 35 36 37 38 39
namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

40
void LogCannotQuantizeOp(Node* op, const char* details = nullptr) {
41 42 43
  std::stringstream msg_ss;
  msg_ss << "Cannot quantize operator " << op->Name()
         << " (type: " << op->Op()->Type() << ", id: " << op->id() << ").";
44
  if (details) msg_ss << " " << details;
45 46 47 48
  PrettyLogDetail(msg_ss.str().c_str());
}

void LogScaleIsMissingForVar(Node* var) {
W
Wojciech Uss 已提交
49 50
  VLOG(4) << "Quantization scale for the variable " << var->Name()
          << " is missing.";
51 52
}

53 54 55 56
void LogQuantizationDisabled(Node* op) {
  std::stringstream msg_ss;
  VLOG(4) << "Qantization skipped for operator " << op->Name()
          << " (type: " << op->Op()->Type() << ", id: " << op->id()
57
          << "). Attribute mkldnn_data_type != \"int8\".";
58 59
}

60 61 62 63 64 65
}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input,
                                    std::string input_name, double scale_to_one,
66 67 68
                                    bool is_input_unsigned,
                                    std::string scale_attr_name, float shift,
                                    std::string shift_attr_name) const {
M
Michał Gallus 已提交
69 70 71
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
72 73 74 75
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
                        "Var(%s) isn't the input of the %s operator.",
                        input_name, op->Op()->Type()));
76
  unsigned max = is_input_unsigned ? U8_MAX : S8_MAX;
77 78 79 80 81 82 83 84 85 86 87 88 89
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
90 91
  q_desc.SetAttr("Shift", shift);
  q_desc.SetAttr("is_negative_input", !is_input_unsigned);
92 93 94

  q_desc.SetAttr("output_format",
                 Has("data_layout") ? Get<std::string>("data_layout") : "NHWC");
95 96 97 98 99 100 101 102 103 104 105 106 107
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
108
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
109 110
}

111
void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name,
112 113 114
                                     bool are_inputs_unsigned,
                                     std::string scale_attr_name, float shift,
                                     std::string shift_attr_name) const {
115
  auto inputs = op->inputs;
116
  auto output = op->outputs[0];
117 118 119 120 121 122 123 124
  PADDLE_ENFORCE_GE(inputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s inputs(%d) must be equal or greater than 1.",
                        op->Name(), inputs.size()));
  PADDLE_ENFORCE_EQ(op->outputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s outputs(%d) must be equal to 1.", op->Name(),
                        op->outputs.size()));
125 126 127 128 129 130 131 132

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

133
  double scale_out = GetScaleValueForNode(output);
134
  unsigned max = are_inputs_unsigned ? U8_MAX : S8_MAX;
135
  float scale = scale_out * max;
136 137 138 139 140 141 142 143

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
144
    q_desc.SetAttr("Shift", shift);
145 146 147
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
148
    q_desc.SetAttr("is_negative_input", !are_inputs_unsigned);
149 150 151 152 153 154 155 156 157 158 159 160 161
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
162
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
163 164
}

165 166 167 168
void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output,
                                       std::string output_name,
                                       double scale_to_one, bool is_unsigned,
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
169 170 171 172 173
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
174 175
                        "Var(%s) isn't the output of the %s operator.",
                        output_name, op->Op()->Type()));
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

205 206 207 208 209 210 211
bool CPUQuantizePass::AreScalesPresentForNodes(
    const Node* op_node, std::initializer_list<Node*> nodes) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  bool present = true;
  for (auto node : nodes) {
    if (scales.count(node->Name()) == 0) {
      present = false;
212
      LogScaleIsMissingForVar(node);
213 214 215 216 217
    }
  }
  return present;
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataForNode(
    const Node* node) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  return scales[node->Name()];
}

LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const {
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

235 236
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
237
         platform::HasOpINT8DataType(node->Op());
238 239 240 241
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
  return node->Op()->Type() == "quantize" ||
242
         platform::HasOpINT8DataType(node->Op());
243 244
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258
void CPUQuantizePass::QuantizeConv(Graph* graph,
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
  conv_pattern(with_residual_data);

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);

    // skip if should not be quantized
259
    if (!platform::HasOpINT8DataType(conv_op->Op())) {
260 261 262
      LogQuantizationDisabled(conv_op);
      return;
    }
263 264 265 266 267

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

W
Wojciech Uss 已提交
268 269 270 271 272 273 274 275
    auto has_output_scale = AreScalesPresentForNodes(conv_op, {conv_output});
    if (with_residual_data && !has_output_scale) {
      LogCannotQuantizeOp(conv_op,
                          "Conv op with ResidualData input cannot be quantized "
                          "without output scale.");
      return;
    }

276 277 278
    if (with_residual_data) {
      GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data,
                                conv_pattern);
279 280 281
      if (!AreScalesPresentForNodes(
              conv_op, {conv_input, conv_filter, conv_residual_data})) {
        LogCannotQuantizeOp(conv_op);
282
        return;
283
      }
284 285 286 287 288 289 290 291

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);

      QuantizeInput(g, conv_op, conv_residual_data, "ResidualData",
                    residual_scale, is_residual_unsigned, "Scale_in_eltwise");
    } else {
292 293
      if (!AreScalesPresentForNodes(conv_op, {conv_input, conv_filter})) {
        LogCannotQuantizeOp(conv_op);
294
        return;
295
      }
296 297
    }

298 299
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
300 301 302
    QuantizeInput(g, conv_op, conv_input, "Input", input_scale,
                  is_input_unsigned, "Scale_in");

303
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
304 305 306 307 308 309 310 311 312
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
                                     filter_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

313
    // if quantization scale is missing for output tensor, return fp32 data
W
Wojciech Uss 已提交
314
    if (has_output_scale) {
315 316 317 318 319 320 321 322
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(conv_output, &is_output_unsigned);
      DequantizeOutput(g, conv_op, conv_output, "Output", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      conv_op->Op()->SetAttr("force_fp32_output", true);
    }
323

324
    // change threshold in bounded ReLu
325 326
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
327 328 329 330
      float scale_out =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out"));
      float threshold =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha"));
331
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
332 333
    }

334 335 336 337 338 339 340 341 342 343 344 345
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_conv_count << " conv2d ops";
  if (with_residual_data) msg_ss << " with residual connection";
  PrettyLogDetail(msg_ss.str().c_str());
}

M
Michał Gallus 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
void CPUQuantizePass::QuantizeFc(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
  auto* fc_input = gpd.mutable_pattern()
                       ->NewNode("fc_quantizer/input")
                       ->AsInput()
                       ->assert_is_op_input("fc", "Input");
  fc_pattern(fc_input, false);

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fc op";
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);

    // skip if should not be quantized
363
    if (!platform::HasOpINT8DataType(fc->Op())) {
364 365 366
      LogQuantizationDisabled(fc);
      return;
    }
367
    if (!fc->Op()->GetAttrIfExists<bool>("use_mkldnn")) {
M
Michał Gallus 已提交
368
      return;
369
    }
M
Michał Gallus 已提交
370 371 372 373 374

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

375 376 377 378
    if (!AreScalesPresentForNodes(fc, {input, weights})) {
      LogCannotQuantizeOp(fc);
      return;
    }
379

380 381
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
M
Michał Gallus 已提交
382 383 384
    QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned,
                  "Scale_in");

385
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
386 387 388 389 390 391 392 393 394
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

395 396 397 398 399 400 401 402 403
    // if quantization scale is missing for output tensor, return fp32 data
    if (AreScalesPresentForNodes(fc, {output})) {
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
      DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned,
                       "Scale_out");
    } else {
      fc->Op()->SetAttr("force_fp32_output", true);
    }
M
Michał Gallus 已提交
404 405 406 407 408 409 410 411 412 413 414 415

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_fc_count << " fc ops";
  PrettyLogDetail(msg_ss.str().c_str());
}

416 417 418 419 420 421 422 423 424 425 426 427 428
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);

    // skip if should not be quantized
429
    if (!platform::HasOpINT8DataType(pool_op->Op())) {
430 431 432
      LogQuantizationDisabled(pool_op);
      return;
    }
433 434 435 436

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

437 438 439 440
    if (!AreScalesPresentForNodes(pool_op, {pool_input, pool_output})) {
      LogCannotQuantizeOp(pool_op);
      return;
    }
441

442 443
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
444 445
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

446 447
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
448 449 450 451 452 453 454 455 456 457 458 459
    DequantizeOutput(g, pool_op, pool_output, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);

  PrettyLogDetail("---    quantized %d pool2d ops", quantize_pool_count);
}

460 461 462 463 464 465 466 467 468 469 470 471 472
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);

    // skip if should not be quantized
473
    if (!platform::HasOpINT8DataType(concat_op->Op())) {
474 475 476
      LogQuantizationDisabled(concat_op);
      return;
    }
477 478 479

    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

480 481 482 483
    if (!AreScalesPresentForNodes(concat_op, {concat_out})) {
      LogCannotQuantizeOp(concat_op);
      return;
    }
484

485 486
    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
487 488 489
    bool are_all_inputs_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(concat_out, &are_all_inputs_unsigned);
490

491
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
492 493 494 495 496 497 498 499 500 501 502 503 504

    DequantizeOutput(g, concat_op, concat_out, "Out", output_scale,
                     are_all_inputs_unsigned);

    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);

  PrettyLogDetail("---    quantized %d concat ops", quantize_concat_count);
}

505 506 507 508 509 510 511 512 513 514 515 516 517
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);

    // skip if should not be quantized
518
    if (!platform::HasOpINT8DataType(prior_box_op->Op())) {
519 520 521
      LogQuantizationDisabled(prior_box_op);
      return;
    }
522 523 524 525

    GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input,
                              prior_box_pattern);

526 527 528 529
    if (!AreScalesPresentForNodes(prior_box_op, {prior_box_input})) {
      LogCannotQuantizeOp(prior_box_op);
      return;
    }
530

531 532 533
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
534 535 536 537 538 539 540 541 542 543 544 545 546
    QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale,
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);

  PrettyLogDetail("---    quantized %d prior_box ops",
                  quantize_prior_box_count);
}

547 548 549 550 551 552 553 554 555 556 557 558 559
void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Transpose transpose_pattern{pattern, name_scope_};
  transpose_pattern();

  int quantize_transpose_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize transpose op";
    GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern);

    // skip if should not be quantized
560
    if (!platform::HasOpINT8DataType(transpose_op->Op())) {
561
      LogQuantizationDisabled(transpose_op);
562 563 564 565 566
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, transpose_pattern);

567 568
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
569 570 571 572 573
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern);

574 575 576
    if (!AreScalesPresentForNodes(transpose_op,
                                  {transpose_in, transpose_out})) {
      LogCannotQuantizeOp(transpose_op);
577
      return;
578
    }
579

580 581
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned);
582 583 584
    QuantizeInput(g, transpose_op, transpose_in, "X", input_scale,
                  is_input_unsigned);

585 586 587
    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(transpose_out, &is_output_unsigned);
588 589 590 591 592 593 594 595 596 597 598 599 600
    DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_transpose_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_transpose_count);

  PrettyLogDetail("---    quantized %d transpose ops",
                  quantize_transpose_count);
}

601 602 603 604 605 606 607 608 609 610 611 612 613
void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Reshape reshape_pattern{pattern, name_scope_};
  reshape_pattern();

  int quantize_reshape_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize reshape op";
    GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern);

    // skip if should not be quantized
614
    if (!platform::HasOpINT8DataType(reshape_op->Op())) {
615
      LogQuantizationDisabled(reshape_op);
616 617 618 619 620
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, reshape_pattern);

621 622
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
623 624 625 626 627 628
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern);

629 630
    if (!AreScalesPresentForNodes(reshape_op, {reshape_in, reshape_out})) {
      LogCannotQuantizeOp(reshape_op);
631
      return;
632
    }
633

634 635
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned);
636 637 638
    QuantizeInput(g, reshape_op, reshape_in, "X", input_scale,
                  is_input_unsigned);

639 640
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned);
641 642 643 644 645 646 647 648 649 650 651 652
    DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_reshape_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_reshape_count);

  PrettyLogDetail("---    quantized %d reshape ops", quantize_reshape_count);
}

653 654 655 656 657 658 659 660 661 662 663 664 665
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Matmul matmul_pattern{pattern, name_scope_};
  matmul_pattern();

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);

    // skip if should not be quantized
666
    if (!platform::HasOpINT8DataType(matmul_op->Op())) {
667
      LogQuantizationDisabled(matmul_op);
668 669 670 671 672 673 674 675 676 677 678 679 680
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
    if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

681 682
    if (!AreScalesPresentForNodes(matmul_op, {matmul_in_x, matmul_in_y})) {
      LogCannotQuantizeOp(matmul_op);
683
      return;
684
    }
685

686 687 688
    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
689 690 691 692 693 694
    PADDLE_ENFORCE_EQ(is_x_unsigned, is_y_unsigned,
                      platform::errors::InvalidArgument(
                          "Matmul inputs should have the same "
                          "attribute of signed/unsigned, but they "
                          "are different: x(%d), y(%d).",
                          is_x_unsigned, is_y_unsigned));
695 696 697 698 699
    QuantizeInput(g, matmul_op, matmul_in_x, "X", input_x_scale, is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g, matmul_op, matmul_in_y, "Y", input_y_scale, is_y_unsigned,
                  "Scale_y");

700 701 702 703 704 705 706 707 708
    // if quantization scale is missing for output tensor, return fp32 data
    if (AreScalesPresentForNodes(matmul_op, {matmul_out})) {
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
      DequantizeOutput(g, matmul_op, matmul_out, "Out", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      matmul_op->Op()->SetAttr("force_fp32_output", true);
    }
709 710 711 712 713 714 715 716 717

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);

  PrettyLogDetail("---    quantized %d matmul ops", quantize_matmul_count);
}

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
void CPUQuantizePass::QuantizeElementwiseAdd(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope_};

  elementwise_add_pattern(
      pattern->NewNode(elementwise_add_pattern.elementwise_add_x_repr()),
      pattern->NewNode(elementwise_add_pattern.elementwise_add_y_repr()));

  int quantize_elementwise_add_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize elementwise_add op";
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
                              elementwise_add_pattern);

    // skip if should not be quantized
735
    if (!platform::HasOpINT8DataType(elementwise_add_op->Op())) {
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
      LogQuantizationDisabled(elementwise_add_op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_x, elementwise_add_x,
                              elementwise_add_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_y, elementwise_add_y,
                              elementwise_add_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
                              elementwise_add_pattern);

    if (!AreScalesPresentForNodes(elementwise_add_op,
                                  {elementwise_add_x, elementwise_add_y})) {
      LogCannotQuantizeOp(elementwise_add_op);
      return;
    }

    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale =
        GetScaleValueForNode(elementwise_add_x, &is_x_unsigned);
    auto input_y_scale =
        GetScaleValueForNode(elementwise_add_y, &is_y_unsigned);

    // TODO(sfraczek): add support for different signness
    if (is_x_unsigned != is_y_unsigned) {
      LogCannotQuantizeOp(elementwise_add_op,
                          "ElementwiseAdd inputs must be of the same type.");
      return;
    }

    QuantizeInput(g, elementwise_add_op, elementwise_add_x, "X", input_x_scale,
                  is_x_unsigned, "Scale_x");
    QuantizeInput(g, elementwise_add_op, elementwise_add_y, "Y", input_y_scale,
                  is_y_unsigned, "Scale_y");

    // if quantization scale is missing for output tensor, return fp32 data
    if (AreScalesPresentForNodes(elementwise_add_op, {elementwise_add_out})) {
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(elementwise_add_out, &is_output_unsigned);
      DequantizeOutput(g, elementwise_add_op, elementwise_add_out, "Out",
                       output_scale, is_output_unsigned, "Scale_out");
    } else {
      elementwise_add_op->Op()->SetAttr("force_fp32_output", true);
    }

    ++quantize_elementwise_add_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_elementwise_add_count);

  PrettyLogDetail("---    quantized %d elementwise_add ops",
                  quantize_elementwise_add_count);
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
void CPUQuantizePass::QuantizeFusionGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(out, out, pattern);

    if (!AreScalesPresentForNodes(op, {x, weight_h, weight_x})) {
      LogCannotQuantizeOp(op);
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

    QuantizeInput(g, op, x, "X", input_x_scale, is_x_unsigned, "Scale_data",
                  input_x_shift, "Shift_data");

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);

  PrettyLogDetail("---    quantized %d fusion_gru ops", quantize_count);
}

847
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
848
  VLOG(3) << "Quantizing the graph.";
849 850
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
851
  FusePassBase::Init(name_scope_, graph);
852

853 854
  PADDLE_ENFORCE_NOT_NULL(param_scope(), platform::errors::InvalidArgument(
                                             "Scope cannot be nullptr."));
855

856 857 858
  QuantizeConv(graph, false /* with_residual_data */);
  QuantizeConv(graph, true /* with_residual_data */);
  QuantizePool(graph);
859
  QuantizeConcat(graph);
860
  QuantizePriorBox(graph);
861
  QuantizeTranspose(graph);
M
Michał Gallus 已提交
862
  QuantizeFc(graph);
863
  QuantizeReshape(graph);
864
  QuantizeMatmul(graph);
865
  QuantizeElementwiseAdd(graph);
866
  QuantizeFusionGru(graph);
867 868 869 870 871 872 873 874
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");