cpu_quantize_pass.cc 28.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"
W
wanghuancoder 已提交
16

17
#include <sstream>
18 19
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

21
#include "paddle/fluid/platform/mkldnn_helper.h"
22 23 24 25 26 27
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

28 29 30
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
using string::PrettyLogDetail;

31 32 33 34 35 36 37 38 39
namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

40
void LogCannotQuantizeOp(Node* op, const char* details = nullptr) {
41 42 43
  std::stringstream msg_ss;
  msg_ss << "Cannot quantize operator " << op->Name()
         << " (type: " << op->Op()->Type() << ", id: " << op->id() << ").";
44
  if (details) msg_ss << " " << details;
45 46 47 48
  PrettyLogDetail(msg_ss.str().c_str());
}

void LogScaleIsMissingForVar(Node* var) {
W
Wojciech Uss 已提交
49 50
  VLOG(4) << "Quantization scale for the variable " << var->Name()
          << " is missing.";
51 52
}

53 54 55 56
void LogQuantizationDisabled(Node* op) {
  std::stringstream msg_ss;
  VLOG(4) << "Qantization skipped for operator " << op->Name()
          << " (type: " << op->Op()->Type() << ", id: " << op->id()
57
          << "). Attribute mkldnn_data_type != \"int8\".";
58 59
}

60 61 62 63 64 65 66 67
}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input,
                                    std::string input_name, double scale_to_one,
                                    bool is_unsigned,
                                    std::string scale_attr_name) const {
M
Michał Gallus 已提交
68 69 70
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
71 72 73 74
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
                        "Var(%s) isn't the input of the %s operator.",
                        input_name, op->Op()->Type()));
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
  q_desc.SetAttr("is_negative_input", !is_unsigned);
90 91 92

  q_desc.SetAttr("output_format",
                 Has("data_layout") ? Get<std::string>("data_layout") : "NHWC");
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

108
void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name,
109
                                     bool are_unsigned,
110 111
                                     std::string scale_attr_name) const {
  auto inputs = op->inputs;
112
  auto output = op->outputs[0];
113 114 115 116 117 118 119 120
  PADDLE_ENFORCE_GE(inputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s inputs(%d) must be equal or greater than 1.",
                        op->Name(), inputs.size()));
  PADDLE_ENFORCE_EQ(op->outputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s outputs(%d) must be equal to 1.", op->Name(),
                        op->outputs.size()));
121 122 123 124 125 126 127 128

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

129
  double scale_out = GetScaleValueForNode(output);
130
  unsigned max = are_unsigned ? U8_MAX : S8_MAX;
131
  float scale = scale_out * max;
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
    q_desc.SetAttr("is_negative_input", !are_unsigned);
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

159 160 161 162
void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output,
                                       std::string output_name,
                                       double scale_to_one, bool is_unsigned,
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
163 164 165 166 167
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
168 169
                        "Var(%s) isn't the output of the %s operator.",
                        output_name, op->Op()->Type()));
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

199 200 201 202 203 204 205
bool CPUQuantizePass::AreScalesPresentForNodes(
    const Node* op_node, std::initializer_list<Node*> nodes) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  bool present = true;
  for (auto node : nodes) {
    if (scales.count(node->Name()) == 0) {
      present = false;
206
      LogScaleIsMissingForVar(node);
207 208 209 210 211
    }
  }
  return present;
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataForNode(
    const Node* node) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  return scales[node->Name()];
}

LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const {
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

229 230
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
231
         platform::HasOpINT8DataType(node->Op());
232 233 234 235
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
  return node->Op()->Type() == "quantize" ||
236
         platform::HasOpINT8DataType(node->Op());
237 238
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252
void CPUQuantizePass::QuantizeConv(Graph* graph,
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
  conv_pattern(with_residual_data);

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);

    // skip if should not be quantized
253
    if (!platform::HasOpINT8DataType(conv_op->Op())) {
254 255 256
      LogQuantizationDisabled(conv_op);
      return;
    }
257 258 259 260 261

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

W
Wojciech Uss 已提交
262 263 264 265 266 267 268 269
    auto has_output_scale = AreScalesPresentForNodes(conv_op, {conv_output});
    if (with_residual_data && !has_output_scale) {
      LogCannotQuantizeOp(conv_op,
                          "Conv op with ResidualData input cannot be quantized "
                          "without output scale.");
      return;
    }

270 271 272
    if (with_residual_data) {
      GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data,
                                conv_pattern);
273 274 275
      if (!AreScalesPresentForNodes(
              conv_op, {conv_input, conv_filter, conv_residual_data})) {
        LogCannotQuantizeOp(conv_op);
276
        return;
277
      }
278 279 280 281 282 283 284 285

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);

      QuantizeInput(g, conv_op, conv_residual_data, "ResidualData",
                    residual_scale, is_residual_unsigned, "Scale_in_eltwise");
    } else {
286 287
      if (!AreScalesPresentForNodes(conv_op, {conv_input, conv_filter})) {
        LogCannotQuantizeOp(conv_op);
288
        return;
289
      }
290 291
    }

292 293
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
294 295 296
    QuantizeInput(g, conv_op, conv_input, "Input", input_scale,
                  is_input_unsigned, "Scale_in");

297
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
298 299 300 301 302 303 304 305 306
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
                                     filter_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

307
    // if quantization scale is missing for output tensor, return fp32 data
W
Wojciech Uss 已提交
308
    if (has_output_scale) {
309 310 311 312 313 314 315 316
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(conv_output, &is_output_unsigned);
      DequantizeOutput(g, conv_op, conv_output, "Output", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      conv_op->Op()->SetAttr("force_fp32_output", true);
    }
317

318
    // change threshold in bounded ReLu
319 320
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
321 322 323 324
      float scale_out =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out"));
      float threshold =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha"));
325
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
326 327
    }

328 329 330 331 332 333 334 335 336 337 338 339
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_conv_count << " conv2d ops";
  if (with_residual_data) msg_ss << " with residual connection";
  PrettyLogDetail(msg_ss.str().c_str());
}

M
Michał Gallus 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
void CPUQuantizePass::QuantizeFc(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
  auto* fc_input = gpd.mutable_pattern()
                       ->NewNode("fc_quantizer/input")
                       ->AsInput()
                       ->assert_is_op_input("fc", "Input");
  fc_pattern(fc_input, false);

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fc op";
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);

    // skip if should not be quantized
357
    if (!platform::HasOpINT8DataType(fc->Op())) {
358 359 360
      LogQuantizationDisabled(fc);
      return;
    }
361
    if (!fc->Op()->GetAttrIfExists<bool>("use_mkldnn")) {
M
Michał Gallus 已提交
362
      return;
363
    }
M
Michał Gallus 已提交
364 365 366 367 368

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

369 370 371 372
    if (!AreScalesPresentForNodes(fc, {input, weights})) {
      LogCannotQuantizeOp(fc);
      return;
    }
373

374 375
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
M
Michał Gallus 已提交
376 377 378
    QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned,
                  "Scale_in");

379
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
380 381 382 383 384 385 386 387 388
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

389 390 391 392 393 394 395 396 397
    // if quantization scale is missing for output tensor, return fp32 data
    if (AreScalesPresentForNodes(fc, {output})) {
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
      DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned,
                       "Scale_out");
    } else {
      fc->Op()->SetAttr("force_fp32_output", true);
    }
M
Michał Gallus 已提交
398 399 400 401 402 403 404 405 406 407 408 409

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_fc_count << " fc ops";
  PrettyLogDetail(msg_ss.str().c_str());
}

410 411 412 413 414 415 416 417 418 419 420 421 422
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);

    // skip if should not be quantized
423
    if (!platform::HasOpINT8DataType(pool_op->Op())) {
424 425 426
      LogQuantizationDisabled(pool_op);
      return;
    }
427 428 429 430

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

431 432 433 434
    if (!AreScalesPresentForNodes(pool_op, {pool_input, pool_output})) {
      LogCannotQuantizeOp(pool_op);
      return;
    }
435

436 437
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
438 439
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

440 441
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
442 443 444 445 446 447 448 449 450 451 452 453
    DequantizeOutput(g, pool_op, pool_output, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);

  PrettyLogDetail("---    quantized %d pool2d ops", quantize_pool_count);
}

454 455 456 457 458 459 460 461 462 463 464 465 466
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);

    // skip if should not be quantized
467
    if (!platform::HasOpINT8DataType(concat_op->Op())) {
468 469 470
      LogQuantizationDisabled(concat_op);
      return;
    }
471 472 473

    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

474 475 476 477
    if (!AreScalesPresentForNodes(concat_op, {concat_out})) {
      LogCannotQuantizeOp(concat_op);
      return;
    }
478

479 480
    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
481 482 483
    bool are_all_inputs_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(concat_out, &are_all_inputs_unsigned);
484

485
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
486 487 488 489 490 491 492 493 494 495 496 497 498

    DequantizeOutput(g, concat_op, concat_out, "Out", output_scale,
                     are_all_inputs_unsigned);

    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);

  PrettyLogDetail("---    quantized %d concat ops", quantize_concat_count);
}

499 500 501 502 503 504 505 506 507 508 509 510 511
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);

    // skip if should not be quantized
512
    if (!platform::HasOpINT8DataType(prior_box_op->Op())) {
513 514 515
      LogQuantizationDisabled(prior_box_op);
      return;
    }
516 517 518 519

    GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input,
                              prior_box_pattern);

520 521 522 523
    if (!AreScalesPresentForNodes(prior_box_op, {prior_box_input})) {
      LogCannotQuantizeOp(prior_box_op);
      return;
    }
524

525 526 527
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
528 529 530 531 532 533 534 535 536 537 538 539 540
    QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale,
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);

  PrettyLogDetail("---    quantized %d prior_box ops",
                  quantize_prior_box_count);
}

541 542 543 544 545 546 547 548 549 550 551 552 553
void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Transpose transpose_pattern{pattern, name_scope_};
  transpose_pattern();

  int quantize_transpose_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize transpose op";
    GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern);

    // skip if should not be quantized
554
    if (!platform::HasOpINT8DataType(transpose_op->Op())) {
555
      LogQuantizationDisabled(transpose_op);
556 557 558 559 560
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, transpose_pattern);

561 562
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
563 564 565 566 567
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern);

568 569 570
    if (!AreScalesPresentForNodes(transpose_op,
                                  {transpose_in, transpose_out})) {
      LogCannotQuantizeOp(transpose_op);
571
      return;
572
    }
573

574 575
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned);
576 577 578
    QuantizeInput(g, transpose_op, transpose_in, "X", input_scale,
                  is_input_unsigned);

579 580 581
    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(transpose_out, &is_output_unsigned);
582 583 584 585 586 587 588 589 590 591 592 593 594
    DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_transpose_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_transpose_count);

  PrettyLogDetail("---    quantized %d transpose ops",
                  quantize_transpose_count);
}

595 596 597 598 599 600 601 602 603 604 605 606 607
void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Reshape reshape_pattern{pattern, name_scope_};
  reshape_pattern();

  int quantize_reshape_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize reshape op";
    GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern);

    // skip if should not be quantized
608
    if (!platform::HasOpINT8DataType(reshape_op->Op())) {
609
      LogQuantizationDisabled(reshape_op);
610 611 612 613 614
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, reshape_pattern);

615 616
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
617 618 619 620 621 622
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern);

623 624
    if (!AreScalesPresentForNodes(reshape_op, {reshape_in, reshape_out})) {
      LogCannotQuantizeOp(reshape_op);
625
      return;
626
    }
627

628 629
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned);
630 631 632
    QuantizeInput(g, reshape_op, reshape_in, "X", input_scale,
                  is_input_unsigned);

633 634
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned);
635 636 637 638 639 640 641 642 643 644 645 646
    DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_reshape_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_reshape_count);

  PrettyLogDetail("---    quantized %d reshape ops", quantize_reshape_count);
}

647 648 649 650 651 652 653 654 655 656 657 658 659
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Matmul matmul_pattern{pattern, name_scope_};
  matmul_pattern();

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);

    // skip if should not be quantized
660
    if (!platform::HasOpINT8DataType(matmul_op->Op())) {
661
      LogQuantizationDisabled(matmul_op);
662 663 664 665 666 667 668 669 670 671 672 673 674
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
    if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

675 676
    if (!AreScalesPresentForNodes(matmul_op, {matmul_in_x, matmul_in_y})) {
      LogCannotQuantizeOp(matmul_op);
677
      return;
678
    }
679

680 681 682
    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
683 684 685 686 687 688
    PADDLE_ENFORCE_EQ(is_x_unsigned, is_y_unsigned,
                      platform::errors::InvalidArgument(
                          "Matmul inputs should have the same "
                          "attribute of signed/unsigned, but they "
                          "are different: x(%d), y(%d).",
                          is_x_unsigned, is_y_unsigned));
689 690 691 692 693
    QuantizeInput(g, matmul_op, matmul_in_x, "X", input_x_scale, is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g, matmul_op, matmul_in_y, "Y", input_y_scale, is_y_unsigned,
                  "Scale_y");

694 695 696 697 698 699 700 701 702
    // if quantization scale is missing for output tensor, return fp32 data
    if (AreScalesPresentForNodes(matmul_op, {matmul_out})) {
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
      DequantizeOutput(g, matmul_op, matmul_out, "Out", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      matmul_op->Op()->SetAttr("force_fp32_output", true);
    }
703 704 705 706 707 708 709 710 711

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);

  PrettyLogDetail("---    quantized %d matmul ops", quantize_matmul_count);
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
void CPUQuantizePass::QuantizeElementwiseAdd(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope_};

  elementwise_add_pattern(
      pattern->NewNode(elementwise_add_pattern.elementwise_add_x_repr()),
      pattern->NewNode(elementwise_add_pattern.elementwise_add_y_repr()));

  int quantize_elementwise_add_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize elementwise_add op";
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
                              elementwise_add_pattern);

    // skip if should not be quantized
729
    if (!platform::HasOpINT8DataType(elementwise_add_op->Op())) {
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
      LogQuantizationDisabled(elementwise_add_op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_x, elementwise_add_x,
                              elementwise_add_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_y, elementwise_add_y,
                              elementwise_add_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
                              elementwise_add_pattern);

    if (!AreScalesPresentForNodes(elementwise_add_op,
                                  {elementwise_add_x, elementwise_add_y})) {
      LogCannotQuantizeOp(elementwise_add_op);
      return;
    }

    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale =
        GetScaleValueForNode(elementwise_add_x, &is_x_unsigned);
    auto input_y_scale =
        GetScaleValueForNode(elementwise_add_y, &is_y_unsigned);

    // TODO(sfraczek): add support for different signness
    if (is_x_unsigned != is_y_unsigned) {
      LogCannotQuantizeOp(elementwise_add_op,
                          "ElementwiseAdd inputs must be of the same type.");
      return;
    }

    QuantizeInput(g, elementwise_add_op, elementwise_add_x, "X", input_x_scale,
                  is_x_unsigned, "Scale_x");
    QuantizeInput(g, elementwise_add_op, elementwise_add_y, "Y", input_y_scale,
                  is_y_unsigned, "Scale_y");

    // if quantization scale is missing for output tensor, return fp32 data
    if (AreScalesPresentForNodes(elementwise_add_op, {elementwise_add_out})) {
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(elementwise_add_out, &is_output_unsigned);
      DequantizeOutput(g, elementwise_add_op, elementwise_add_out, "Out",
                       output_scale, is_output_unsigned, "Scale_out");
    } else {
      elementwise_add_op->Op()->SetAttr("force_fp32_output", true);
    }

    ++quantize_elementwise_add_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_elementwise_add_count);

  PrettyLogDetail("---    quantized %d elementwise_add ops",
                  quantize_elementwise_add_count);
}

785
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
786
  VLOG(3) << "Quantizing the graph.";
787 788
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
789
  FusePassBase::Init(name_scope_, graph);
790

791 792
  PADDLE_ENFORCE_NOT_NULL(param_scope(), platform::errors::InvalidArgument(
                                             "Scope cannot be nullptr."));
793

794 795 796
  QuantizeConv(graph, false /* with_residual_data */);
  QuantizeConv(graph, true /* with_residual_data */);
  QuantizePool(graph);
797
  QuantizeConcat(graph);
798
  QuantizePriorBox(graph);
799
  QuantizeTranspose(graph);
M
Michał Gallus 已提交
800
  QuantizeFc(graph);
801
  QuantizeReshape(graph);
802
  QuantizeMatmul(graph);
803
  QuantizeElementwiseAdd(graph);
804 805 806 807 808 809 810 811
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");