cpu_quantize_pass.cc 23.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"
16
#include <limits>
17
#include <sstream>
18 19 20
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
M
Michał Gallus 已提交
21
#include "paddle/fluid/platform/errors.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
using string::PrettyLogDetail;

void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input,
                                    std::string input_name, double scale_to_one,
                                    bool is_unsigned,
                                    std::string scale_attr_name) const {
M
Michał Gallus 已提交
48 49 50 51 52 53 54
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
  PADDLE_ENFORCE_EQ(
      name_found, true,
      platform::errors::InvalidArgument("%s isn't the input of the %s operator",
                                        input_name, op->Op()->Type()));
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
  q_desc.SetAttr("is_negative_input", !is_unsigned);
70 71 72

  q_desc.SetAttr("output_format",
                 Has("data_layout") ? Get<std::string>("data_layout") : "NHWC");
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

88
void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name,
89
                                     bool are_unsigned,
90 91
                                     std::string scale_attr_name) const {
  auto inputs = op->inputs;
92
  auto output = op->outputs[0];
93
  PADDLE_ENFORCE_GE(inputs.size(), 1);
94
  PADDLE_ENFORCE_EQ(op->outputs.size(), 1);
95 96 97 98 99 100 101 102

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

103
  double scale_out = GetScaleValueForNode(output);
104
  unsigned max = are_unsigned ? U8_MAX : S8_MAX;
105
  float scale = scale_out * max;
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
    q_desc.SetAttr("is_negative_input", !are_unsigned);
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

133 134 135 136
void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output,
                                       std::string output_name,
                                       double scale_to_one, bool is_unsigned,
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
137 138 139 140 141 142 143
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
                        "%s isn't the output of the %s operator", output_name,
                        op->Op()->Type()));
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
bool CPUQuantizePass::AreScalesPresentForNodes(
    const Node* op_node, std::initializer_list<Node*> nodes) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  bool present = true;
  for (auto node : nodes) {
    if (scales.count(node->Name()) == 0) {
      present = false;
      std::stringstream msg_ss;
      msg_ss << "Quantization scale for the variable " << node->Name()
             << " is missing.";
      PrettyLogDetail(msg_ss.str().c_str());
    }
  }
  if (!present) {
    std::stringstream msg_ss;
    msg_ss << "Cannot quantize operator " << op_node->Name()
           << " (type: " << op_node->Op()->Type() << ").";
    PrettyLogDetail(msg_ss.str().c_str());
  }
  return present;
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataForNode(
    const Node* node) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  return scales[node->Name()];
}

LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const {
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

212 213 214 215 216 217 218 219 220 221
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
         node->Op()->GetAttrIfExists<bool>("use_quantizer");
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
  return node->Op()->Type() == "quantize" ||
         node->Op()->GetAttrIfExists<bool>("use_quantizer");
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
void CPUQuantizePass::QuantizeConv(Graph* graph,
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
  conv_pattern(with_residual_data);

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);
    auto* conv_op_desc = conv_op->Op();

    // skip if should not be quantized
237
    if (!conv_op_desc->GetAttrIfExists<bool>("use_quantizer")) return;
238 239 240 241 242

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    if (with_residual_data) {
      GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data,
                                conv_pattern);
      if (!AreScalesPresentForNodes(conv_op, {conv_input, conv_filter,
                                              conv_residual_data, conv_output}))
        return;

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);

      QuantizeInput(g, conv_op, conv_residual_data, "ResidualData",
                    residual_scale, is_residual_unsigned, "Scale_in_eltwise");
    } else {
      if (!AreScalesPresentForNodes(conv_op,
                                    {conv_input, conv_filter, conv_output}))
        return;
    }

262 263
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
264 265 266
    QuantizeInput(g, conv_op, conv_input, "Input", input_scale,
                  is_input_unsigned, "Scale_in");

267
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
268 269 270 271 272 273 274 275 276
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
                                     filter_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

277 278
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(conv_output, &is_output_unsigned);
279 280 281
    DequantizeOutput(g, conv_op, conv_output, "Output", output_scale,
                     is_output_unsigned, "Scale_out");

282
    // change threshold in bounded ReLu
283 284
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
285
      float scale_out = boost::get<float>(conv_op->Op()->GetAttr("Scale_out"));
286 287
      float threshold = boost::get<float>(conv_op->Op()->GetAttr("fuse_alpha"));
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
288 289
    }

290 291 292 293 294 295 296 297 298 299 300 301
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_conv_count << " conv2d ops";
  if (with_residual_data) msg_ss << " with residual connection";
  PrettyLogDetail(msg_ss.str().c_str());
}

M
Michał Gallus 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
void CPUQuantizePass::QuantizeFc(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
  auto* fc_input = gpd.mutable_pattern()
                       ->NewNode("fc_quantizer/input")
                       ->AsInput()
                       ->assert_is_op_input("fc", "Input");
  fc_pattern(fc_input, false);

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fc op";
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);
    auto* fc_op_desc = fc->Op();

    // skip if should not be quantized
    if (fc_op_desc->GetAttrIfExists<bool>("use_quantizer") != true ||
        fc_op_desc->GetAttrIfExists<bool>("use_mkldnn") != true)
      return;

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

328 329
    if (!AreScalesPresentForNodes(fc, {input, weights, output})) return;

330 331
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
M
Michał Gallus 已提交
332 333 334
    QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned,
                  "Scale_in");

335
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
336 337 338 339 340 341 342 343 344
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel(), 1};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

345 346
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
M
Michał Gallus 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360
    DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned,
                     "Scale_out");

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);

  std::stringstream msg_ss;
  msg_ss << "---    quantized " << quantize_fc_count << " fc ops";
  PrettyLogDetail(msg_ss.str().c_str());
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);
    auto* pool_op_desc = pool_op->Op();

    // skip if should not be quantized
375
    if (!pool_op_desc->GetAttrIfExists<bool>("use_quantizer")) return;
376 377 378 379

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

380 381
    if (!AreScalesPresentForNodes(pool_op, {pool_input, pool_output})) return;

382 383
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
384 385
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

386 387
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
388 389 390 391 392 393 394 395 396 397 398 399
    DequantizeOutput(g, pool_op, pool_output, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);

  PrettyLogDetail("---    quantized %d pool2d ops", quantize_pool_count);
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);
    auto* concat_op_desc = concat_op->Op();

    // skip if should not be quantized
414
    if (!concat_op_desc->GetAttrIfExists<bool>("use_quantizer")) return;
415 416 417

    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

418 419
    if (!AreScalesPresentForNodes(concat_op, {concat_out})) return;

420 421
    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
422 423 424
    bool are_all_inputs_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(concat_out, &are_all_inputs_unsigned);
425

426
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
427 428 429 430 431 432 433 434 435 436 437 438 439

    DequantizeOutput(g, concat_op, concat_out, "Out", output_scale,
                     are_all_inputs_unsigned);

    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);

  PrettyLogDetail("---    quantized %d concat ops", quantize_concat_count);
}

440 441 442 443 444 445 446 447 448 449 450 451 452 453
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);
    auto* prior_box_op_desc = prior_box_op->Op();

    // skip if should not be quantized
454
    if (!prior_box_op_desc->GetAttrIfExists<bool>("use_quantizer")) return;
455 456 457 458

    GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input,
                              prior_box_pattern);

459 460
    if (!AreScalesPresentForNodes(prior_box_op, {prior_box_input})) return;

461 462 463
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
464 465 466 467 468 469 470 471 472 473 474 475 476
    QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale,
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);

  PrettyLogDetail("---    quantized %d prior_box ops",
                  quantize_prior_box_count);
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Transpose transpose_pattern{pattern, name_scope_};
  transpose_pattern();

  int quantize_transpose_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize transpose op";
    GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern);
    auto* transpose_op_desc = transpose_op->Op();

    // skip if should not be quantized
    if (!transpose_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, transpose_pattern);

497 498
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
499 500 501 502 503
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern);

504 505 506
    if (!AreScalesPresentForNodes(transpose_op, {transpose_in, transpose_out}))
      return;

507 508
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned);
509 510 511
    QuantizeInput(g, transpose_op, transpose_in, "X", input_scale,
                  is_input_unsigned);

512 513 514
    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(transpose_out, &is_output_unsigned);
515 516 517 518 519 520 521 522 523 524 525 526 527
    DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_transpose_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_transpose_count);

  PrettyLogDetail("---    quantized %d transpose ops",
                  quantize_transpose_count);
}

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Reshape reshape_pattern{pattern, name_scope_};
  reshape_pattern();

  int quantize_reshape_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize reshape op";
    GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern);
    auto* reshape_op_desc = reshape_op->Op();

    // skip if should not be quantized
    if (!reshape_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, reshape_pattern);

548 549
    // skip if prev op and next op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(next_op))) {
550 551 552 553 554 555
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern);

556 557 558
    if (!AreScalesPresentForNodes(reshape_op, {reshape_in, reshape_out}))
      return;

559 560
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned);
561 562 563
    QuantizeInput(g, reshape_op, reshape_in, "X", input_scale,
                  is_input_unsigned);

564 565
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned);
566 567 568 569 570 571 572 573 574 575 576 577
    DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_reshape_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_reshape_count);

  PrettyLogDetail("---    quantized %d reshape ops", quantize_reshape_count);
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Matmul matmul_pattern{pattern, name_scope_};
  matmul_pattern();

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);
    auto* matmul_op_desc = matmul_op->Op();

    // skip if should not be quantized
    if (!matmul_op_desc->GetAttrIfExists<bool>("use_quantizer")) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
    if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) {
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

606 607 608 609
    if (!AreScalesPresentForNodes(matmul_op,
                                  {matmul_in_x, matmul_in_y, matmul_out}))
      return;

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
    PADDLE_ENFORCE_EQ(
        is_x_unsigned, is_y_unsigned,
        platform::errors::InvalidArgument(
            "Matmul inputs should have the same value of is_unsigned"));
    QuantizeInput(g, matmul_op, matmul_in_x, "X", input_x_scale, is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g, matmul_op, matmul_in_y, "Y", input_y_scale, is_y_unsigned,
                  "Scale_y");

    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
    DequantizeOutput(g, matmul_op, matmul_out, "Out", output_scale,
                     is_output_unsigned, "Scale_out");

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);

  PrettyLogDetail("---    quantized %d matmul ops", quantize_matmul_count);
}

635
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
636
  VLOG(3) << "Quantizing the graph.";
637 638
  PADDLE_ENFORCE(graph);
  FusePassBase::Init(name_scope_, graph);
639 640 641

  PADDLE_ENFORCE(param_scope());

642 643 644
  QuantizeConv(graph, false /* with_residual_data */);
  QuantizeConv(graph, true /* with_residual_data */);
  QuantizePool(graph);
645
  QuantizeConcat(graph);
646
  QuantizePriorBox(graph);
647
  QuantizeTranspose(graph);
M
Michał Gallus 已提交
648
  QuantizeFc(graph);
649
  QuantizeReshape(graph);
650
  QuantizeMatmul(graph);
651 652 653 654 655 656 657 658
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");