interpolate_op.h 28.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <string>
14
#include <vector>
15 16 17 18 19 20 21 22 23 24 25
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
inline std::vector<int> get_new_shape(
    const std::vector<const Tensor*>& list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
    PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}),
                      "shape of dim tensor should be [1]");
    if (platform::is_gpu_place(tensor->place())) {
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

template <typename T>
inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
  std::vector<T> vec_new_data;
  auto* new_data = new_data_tensor->data<T>();
  framework::Tensor cpu_starts_tensor;
  if (platform::is_gpu_place(new_data_tensor->place())) {
    TensorCopySync(*new_data_tensor, platform::CPUPlace(), &cpu_starts_tensor);
    new_data = cpu_starts_tensor.data<T>();
  }
  vec_new_data = std::vector<T>(new_data, new_data + new_data_tensor->numel());
  return vec_new_data;
}

60 61 62 63
template <typename T>
static void NearestNeighborInterpolate(const Tensor& input, Tensor* output,
                                       const float ratio_h, const float ratio_w,
                                       const int n, const int c,
64 65
                                       const int out_h, const int out_w,
                                       const bool align_corners) {
66 67 68
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
  for (int k = 0; k < out_h; k++) {  // loop for images
69 70
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
71 72

    for (int l = 0; l < out_w; l++) {
73 74
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
75 76 77 78 79 80 81 82 83 84 85 86 87 88

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          output_t(i, j, k, l) = input_t(i, j, in_k, in_l);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolation(const Tensor& input, Tensor* output,
                                  const float ratio_h, const float ratio_w,
                                  const int in_h, const int in_w, const int n,
89 90 91
                                  const int c, const int out_h, const int out_w,
                                  const bool align_corners,
                                  const bool align_mode) {
92 93
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
T
tink2123 已提交
94
  bool align_flag = (align_mode == 0 && !align_corners);
95 96 97 98 99 100 101 102 103 104 105

  std::vector<int> vy_n, vy_s;
  std::vector<float> vd_n, vd_s;
  vy_n.reserve(out_h);
  vy_s.reserve(out_h);
  vd_n.reserve(out_h);
  vd_s.reserve(out_h);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int k = 0; k < out_h; k++) {
T
tink2123 已提交
106 107
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
T
tink2123 已提交
108
    y_n = (y_n > 0) ? y_n : 0;
109
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
110 111 112
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
113
    float d_s = 1.f - d_n;
114 115 116 117 118 119 120
    {
      vy_n[k] = y_n;
      vy_s[k] = y_s;
      vd_n[k] = d_n;
      vd_s[k] = d_s;
    }
  }
121

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  std::vector<int> vx_w, vx_e;
  std::vector<float> vd_w, vd_e;
  vx_w.reserve(out_w);
  vx_e.reserve(out_w);
  vd_w.reserve(out_w);
  vd_e.reserve(out_w);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int l = 0; l < out_w; l++) {
    int x_w = (align_mode == 0 && !align_corners)
                  ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                  : static_cast<int>(ratio_w * l);
    x_w = (x_w > 0) ? x_w : 0;
    int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
137 138 139
    float idx_src_x = ratio_w * (l + 0.5) - 0.5;
    idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
    float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
140 141 142 143 144 145 146 147
    float d_e = 1.f - d_w;
    {
      vx_w[l] = x_w;
      vx_e[l] = x_e;
      vd_w[l] = d_w;
      vd_e[l] = d_e;
    }
  }
148

149 150 151 152 153 154 155
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(4)
#endif
  for (int i = 0; i < n; i++) {          // loop for batches
    for (int j = 0; j < c; j++) {        // loop for channels
      for (int k = 0; k < out_h; k++) {  // loop for images
        for (int l = 0; l < out_w; l++) {
156
          // bilinear interpolation
157 158 159 160 161
          T out_t = input_t(i, j, vy_n[k], vx_w[l]) * vd_s[k] * vd_e[l] +
                    input_t(i, j, vy_s[k], vx_w[l]) * vd_n[k] * vd_e[l] +
                    input_t(i, j, vy_n[k], vx_e[l]) * vd_s[k] * vd_w[l] +
                    input_t(i, j, vy_s[k], vx_e[l]) * vd_n[k] * vd_w[l];
          output_t(i, j, k, l) = out_t;
162 163 164 165 166 167
        }
      }
    }
  }
}

K
Kaipeng Deng 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
template <typename T>
static void TrilinearInterpolation(
    const Tensor& input, Tensor* output, const float ratio_d,
    const float ratio_h, const float ratio_w, const int in_d, const int in_h,
    const int in_w, const int n, const int c, const int out_d, const int out_h,
    const int out_w, const bool align_corners, const bool align_mode) {
  auto input_t = EigenTensor<T, 5>::From(input);
  auto output_t = EigenTensor<T, 5>::From(*output);
  bool align_flag = (align_mode == 0 && !align_corners);

  std::vector<int> vt_f, vt_b;
  std::vector<float> vd_f, vd_b;
  vt_f.reserve(out_d);
  vt_b.reserve(out_d);
  vd_f.reserve(out_d);
  vd_b.reserve(out_d);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int j = 0; j < out_d; j++) {
    int t_f = align_flag ? static_cast<int>(ratio_d * (j + 0.5) - 0.5)
                         : static_cast<int>(ratio_d * j);
    t_f = (t_f > 0) ? t_f : 0;
    int t_b = (t_f + 1) < (in_d - 1) ? (t_f + 1) : (in_d - 1);
    float idx_src_t = ratio_d * (j + 0.5) - 0.5;
    idx_src_t = (idx_src_t > 0) ? idx_src_t : 0;
    float d_f = align_flag ? idx_src_t - t_f : ratio_d * j - t_f;
    float d_b = 1.f - d_f;
    {
      vt_f[j] = t_f;
      vt_b[j] = t_b;
      vd_f[j] = d_f;
      vd_b[j] = d_b;
    }
  }

  std::vector<int> vy_n, vy_s;
  std::vector<float> vd_n, vd_s;
  vy_n.reserve(out_h);
  vy_s.reserve(out_h);
  vd_n.reserve(out_h);
  vd_s.reserve(out_h);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int k = 0; k < out_h; k++) {
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
    y_n = (y_n > 0) ? y_n : 0;
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
    float d_s = 1.f - d_n;
    {
      vy_n[k] = y_n;
      vy_s[k] = y_s;
      vd_n[k] = d_n;
      vd_s[k] = d_s;
    }
  }

  std::vector<int> vx_w, vx_e;
  std::vector<float> vd_w, vd_e;
  vx_w.reserve(out_w);
  vx_e.reserve(out_w);
  vd_w.reserve(out_w);
  vd_e.reserve(out_w);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int l = 0; l < out_w; l++) {
    int x_w = (align_mode == 0 && !align_corners)
                  ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                  : static_cast<int>(ratio_w * l);
    x_w = (x_w > 0) ? x_w : 0;
    int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
    float idx_src_x = ratio_w * (l + 0.5) - 0.5;
    idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
    float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
    float d_e = 1.f - d_w;
    {
      vx_w[l] = x_w;
      vx_e[l] = x_e;
      vd_w[l] = d_w;
      vd_e[l] = d_e;
    }
  }

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(5)
#endif
  for (int b = 0; b < n; b++) {          // loop for batches
    for (int i = 0; i < c; i++) {        // loop for channels
      for (int j = 0; j < out_d; j++) {  // loop for D, H, W
        for (int k = 0; k < out_h; k++) {
          for (int l = 0; l < out_w; l++) {
            // trilinear interpolation
            T out_t = input_t(b, i, vt_f[j], vy_n[k], vx_w[l]) * vd_b[j] *
                          vd_s[k] * vd_e[l] +
                      input_t(b, i, vt_f[j], vy_n[k], vx_e[l]) * vd_b[j] *
                          vd_s[k] * vd_w[l] +
                      input_t(b, i, vt_f[j], vy_s[k], vx_w[l]) * vd_b[j] *
                          vd_n[k] * vd_e[l] +
                      input_t(b, i, vt_f[j], vy_s[k], vx_e[l]) * vd_b[j] *
                          vd_n[k] * vd_w[l] +
                      input_t(b, i, vt_b[j], vy_n[k], vx_w[l]) * vd_f[j] *
                          vd_s[k] * vd_e[l] +
                      input_t(b, i, vt_b[j], vy_n[k], vx_e[l]) * vd_f[j] *
                          vd_s[k] * vd_w[l] +
                      input_t(b, i, vt_b[j], vy_s[k], vx_w[l]) * vd_f[j] *
                          vd_n[k] * vd_e[l] +
                      input_t(b, i, vt_b[j], vy_s[k], vx_e[l]) * vd_f[j] *
                          vd_n[k] * vd_w[l];
            output_t(b, i, j, k, l) = out_t;
          }
        }
      }
    }
  }
}

290
template <typename T>
291 292 293 294
static void NearestNeighborInterpolateGrad(
    const Tensor& output_grad, Tensor* input_grad, const float ratio_h,
    const float ratio_w, const int n, const int c, const int out_h,
    const int out_w, const bool align_corners) {
295 296
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
297

298
  for (int k = 0; k < out_h; k++) {  // loop for images
299 300
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
301 302

    for (int l = 0; l < out_w; l++) {
303 304
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolationGrad(const Tensor& output_grad,
                                      Tensor* input_grad, const float ratio_h,
                                      const float ratio_w, const int in_h,
                                      const int in_w, const int n, const int c,
320 321 322
                                      const int out_h, const int out_w,
                                      const bool align_corners,
                                      const int align_mode) {
323 324
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
T
tink2123 已提交
325
  bool align_flag = (align_mode == 0 && !align_corners);
326
  for (int k = 0; k < out_h; k++) {  // loop for images
T
tink2123 已提交
327 328
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
T
tink2123 已提交
329
    y_n = (y_n > 0) ? y_n : 0;
330
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
331 332 333
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
334 335 336
    float d_s = 1.f - d_n;

    for (int l = 0; l < out_w; l++) {
T
tink2123 已提交
337 338
      int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                           : static_cast<int>(ratio_w * l);
T
tink2123 已提交
339
      x_w = (x_w > 0) ? x_w : 0;
340
      int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
341 342 343
      float idx_src_x = ratio_w * (l + 0.5) - 0.5;
      idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
      float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
      float d_e = 1.f - d_w;

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          // bilinear interpolation grad
          const T grad = output_grad_t(i, j, k, l);
          input_grad_t(i, j, y_n, x_w) += static_cast<T>(grad * d_s * d_e);
          input_grad_t(i, j, y_s, x_w) += static_cast<T>(grad * d_n * d_e);
          input_grad_t(i, j, y_n, x_e) += static_cast<T>(grad * d_s * d_w);
          input_grad_t(i, j, y_s, x_e) += static_cast<T>(grad * d_n * d_w);
        }
      }
    }
  }
}
K
Kaipeng Deng 已提交
359

360
template <typename T>
K
Kaipeng Deng 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static void TrilinearInterpolationGrad(
    const Tensor& output_grad, Tensor* input_grad, const float ratio_d,
    const float ratio_h, const float ratio_w, const int in_d, const int in_h,
    const int in_w, const int n, const int c, const int out_d, const int out_h,
    const int out_w, const bool align_corners, const int align_mode) {
  auto input_grad_t = EigenTensor<T, 5>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 5>::From(output_grad);
  bool align_flag = (align_mode == 0 && !align_corners);
  for (int j = 0; j < out_d; j++) {  // loop for D
    int t_f = align_flag ? static_cast<int>(ratio_d * (j + 0.5) - 0.5)
                         : static_cast<int>(ratio_d * j);
    t_f = (t_f > 0) ? t_f : 0;
    int t_b = (t_f + 1) < (in_d - 1) ? (t_f + 1) : (in_d - 1);
    float idx_src_t = ratio_d * (j + 0.5) - 0.5;
    idx_src_t = (idx_src_t > 0) ? idx_src_t : 0;
    float d_f = align_flag ? idx_src_t - t_f : ratio_d * j - t_f;
    float d_b = 1.f - d_f;

    for (int k = 0; k < out_h; k++) {  // loop for H
      int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                           : static_cast<int>(ratio_h * k);
      y_n = (y_n > 0) ? y_n : 0;
      int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
      float idx_src_y = ratio_h * (k + 0.5) - 0.5;
      idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
      float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
      float d_s = 1.f - d_n;

      for (int l = 0; l < out_w; l++) {  // loop for W
        int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                             : static_cast<int>(ratio_w * l);
        x_w = (x_w > 0) ? x_w : 0;
        int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
        float idx_src_x = ratio_w * (l + 0.5) - 0.5;
        idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
        float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
        float d_e = 1.f - d_w;

        for (int b = 0; b < n; b++) {    // loop for batches
          for (int i = 0; i < c; i++) {  // loop for channels
            // trilinear interpolation grad
            const T grad = output_grad_t(b, i, j, k, l);
            input_grad_t(b, i, t_f, y_n, x_w) +=
                static_cast<T>(grad * d_b * d_s * d_e);
            input_grad_t(b, i, t_f, y_n, x_e) +=
                static_cast<T>(grad * d_b * d_s * d_w);
            input_grad_t(b, i, t_f, y_s, x_w) +=
                static_cast<T>(grad * d_b * d_n * d_e);
            input_grad_t(b, i, t_f, y_s, x_e) +=
                static_cast<T>(grad * d_b * d_n * d_w);
            input_grad_t(b, i, t_b, y_n, x_w) +=
                static_cast<T>(grad * d_f * d_s * d_e);
            input_grad_t(b, i, t_b, y_n, x_e) +=
                static_cast<T>(grad * d_f * d_s * d_w);
            input_grad_t(b, i, t_b, y_s, x_w) +=
                static_cast<T>(grad * d_f * d_n * d_e);
            input_grad_t(b, i, t_b, y_s, x_e) +=
                static_cast<T>(grad * d_f * d_n * d_w);
          }
        }
      }
    }
  }
}
425

K
Kaipeng Deng 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439
template <typename T>
static void Interpolate2DCPUFwd(const framework::ExecutionContext& ctx,
                                const Tensor& input, Tensor* output) {
  const int n = input.dims()[0];
  const int c = input.dims()[1];
  const int in_h = input.dims()[2];
  const int in_w = input.dims()[3];

  auto interp_method = ctx.Attr<std::string>("interp_method");
  bool align_corners = ctx.Attr<bool>("align_corners");
  int align_mode = ctx.Attr<int>("align_mode");

  int out_h = ctx.Attr<int>("out_h");
  int out_w = ctx.Attr<int>("out_w");
D
dengkaipeng 已提交
440

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
  auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
  if (list_new_size_tensor.size() > 0) {
    // have size tensor
    auto new_size = get_new_shape(list_new_size_tensor);
    out_h = new_size[0];
    out_w = new_size[1];
  } else {
    float scale;
    auto scale_tensor = ctx.Input<Tensor>("Scale");
    if (scale_tensor != nullptr) {
      auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
      scale = scale_data[0];
    } else {
      scale = ctx.Attr<float>("scale");
    }
    if (scale > 0) {
      out_h = static_cast<int>(in_h * scale);
      out_w = static_cast<int>(in_w * scale);
    }
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (out_size != nullptr) {
      auto out_size_data = get_new_data_from_tensor<int>(out_size);
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
K
Kaipeng Deng 已提交
466
  }
467 468 469 470 471 472
  PADDLE_ENFORCE_GT(
      out_h, 0,
      "out_h in Attr(out_shape) of Op(interpolate) should be greater than 0.");
  PADDLE_ENFORCE_GT(
      out_w, 0,
      "out_w in Attr(out_shape) of Op(interpolate) should be greater than 0.");
K
Kaipeng Deng 已提交
473
  output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
D
dengkaipeng 已提交
474

K
Kaipeng Deng 已提交
475 476 477 478
  if (in_h == out_h && in_w == out_w) {
    framework::TensorCopy(input, ctx.GetPlace(), output);
    return;
  }
479

K
Kaipeng Deng 已提交
480 481 482 483 484 485 486 487 488 489
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
  }
T
tink2123 已提交
490

K
Kaipeng Deng 已提交
491 492 493 494 495 496 497 498
  if ("bilinear" == interp_method) {
    BilinearInterpolation<T>(input, output, ratio_h, ratio_w, in_h, in_w, n, c,
                             out_h, out_w, align_corners, align_mode);
  } else if ("nearest" == interp_method) {
    NearestNeighborInterpolate<T>(input, output, ratio_h, ratio_w, n, c, out_h,
                                  out_w, align_corners);
  }
}
499

K
Kaipeng Deng 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
template <typename T>
static void Interpolate3DCPUFwd(const framework::ExecutionContext& ctx,
                                const Tensor& input, Tensor* output) {
  const int n = input.dims()[0];
  const int c = input.dims()[1];
  const int in_d = input.dims()[2];
  const int in_h = input.dims()[3];
  const int in_w = input.dims()[4];

  auto interp_method = ctx.Attr<std::string>("interp_method");
  bool align_corners = ctx.Attr<bool>("align_corners");
  int align_mode = ctx.Attr<int>("align_mode");

  int out_d = ctx.Attr<int>("out_d");
  int out_h = ctx.Attr<int>("out_h");
  int out_w = ctx.Attr<int>("out_w");

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
  auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
  if (list_new_size_tensor.size() > 0) {
    // have size tensor
    auto new_size = get_new_shape(list_new_size_tensor);
    out_d = new_size[0];
    out_h = new_size[1];
    out_w = new_size[2];
  } else {
    float scale;
    auto scale_tensor = ctx.Input<Tensor>("Scale");
    if (scale_tensor != nullptr) {
      auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
      scale = scale_data[0];
    } else {
      scale = ctx.Attr<float>("scale");
    }
    if (scale > 0) {
      out_d = static_cast<int>(in_d * scale);
      out_h = static_cast<int>(in_h * scale);
      out_w = static_cast<int>(in_w * scale);
    }
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (out_size != nullptr) {
      auto out_size_data = get_new_data_from_tensor<int>(out_size);
      out_d = out_size_data[0];
      out_h = out_size_data[1];
      out_w = out_size_data[2];
    }
K
Kaipeng Deng 已提交
545
  }
546 547 548 549 550 551 552 553 554
  PADDLE_ENFORCE_GT(
      out_d, 0,
      "out_d in Attr(out_shape) of Op(interpolate) should be greater than 0.");
  PADDLE_ENFORCE_GT(
      out_h, 0,
      "out_h in Attr(out_shape) of Op(interpolate) should be greater than 0.");
  PADDLE_ENFORCE_GT(
      out_w, 0,
      "out_w in Attr(out_shape) of Op(interpolate) should be greater than 0.");
K
Kaipeng Deng 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
  output->mutable_data<T>({n, c, out_d, out_h, out_w}, ctx.GetPlace());

  if (in_d == out_d && in_h == out_h && in_w == out_w) {
    framework::TensorCopy(input, ctx.GetPlace(), output);
    return;
  }

  float ratio_d = 0.f;
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_d > 1) {
    ratio_d = (align_corners) ? static_cast<float>(in_d - 1) / (out_d - 1)
                              : static_cast<float>(in_d) / out_d;
  }
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
576
  }
K
Kaipeng Deng 已提交
577 578 579 580 581 582 583

  if ("trilinear" == interp_method) {
    TrilinearInterpolation<T>(input, output, ratio_d, ratio_h, ratio_w, in_d,
                              in_h, in_w, n, c, out_d, out_h, out_w,
                              align_corners, align_mode);
  }
}
584 585

template <typename T>
K
Kaipeng Deng 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599
static void Interpolate2DCPUBwd(const framework::ExecutionContext& ctx,
                                Tensor* input_grad, const Tensor& output_grad) {
  auto* input = ctx.Input<Tensor>("X");
  const int n = input->dims()[0];
  const int c = input->dims()[1];
  const int in_h = input->dims()[2];
  const int in_w = input->dims()[3];

  auto interp_method = ctx.Attr<std::string>("interp_method");
  bool align_corners = ctx.Attr<bool>("align_corners");
  int align_mode = ctx.Attr<int>("align_mode");

  int out_h = ctx.Attr<int>("out_h");
  int out_w = ctx.Attr<int>("out_w");
600 601 602 603 604 605 606 607
  float scale;
  auto scale_tensor = ctx.Input<Tensor>("Scale");
  if (scale_tensor != nullptr) {
    auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
    scale = scale_data[0];
  } else {
    scale = ctx.Attr<float>("scale");
  }
K
Kaipeng Deng 已提交
608 609 610 611 612 613
  if (scale > 0) {
    out_h = static_cast<int>(in_h * scale);
    out_w = static_cast<int>(in_w * scale);
  }
  auto out_size = ctx.Input<Tensor>("OutSize");
  if (out_size != nullptr) {
614
    auto out_size_data = get_new_data_from_tensor<int>(out_size);
K
Kaipeng Deng 已提交
615 616 617
    out_h = out_size_data[0];
    out_w = out_size_data[1];
  }
618 619 620 621 622 623 624
  auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
  if (list_new_size_tensor.size() > 0) {
    // have size tensor
    auto new_size = get_new_shape(list_new_size_tensor);
    out_h = new_size[0];
    out_w = new_size[1];
  }
D
dengkaipeng 已提交
625

K
Kaipeng Deng 已提交
626 627 628 629
  input_grad->mutable_data<T>({n, c, in_h, in_w}, ctx.GetPlace());
  auto& device_ctx = ctx.template device_context<platform::CPUDeviceContext>();
  math::SetConstant<platform::CPUDeviceContext, T> zero;
  zero(device_ctx, input_grad, static_cast<T>(0.0));
D
dengkaipeng 已提交
630

K
Kaipeng Deng 已提交
631 632 633 634
  if (in_h == out_h && in_w == out_w) {
    framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad);
    return;
  }
D
dengkaipeng 已提交
635

K
Kaipeng Deng 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
  }

  if ("bilinear" == interp_method) {
    BilinearInterpolationGrad<T>(output_grad, input_grad, ratio_h, ratio_w,
                                 in_h, in_w, n, c, out_h, out_w, align_corners,
                                 align_mode);
  } else if ("nearest" == interp_method) {
    NearestNeighborInterpolateGrad<T>(output_grad, input_grad, ratio_h, ratio_w,
                                      n, c, out_h, out_w, align_corners);
  }
}
D
dengkaipeng 已提交
656

K
Kaipeng Deng 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
template <typename T>
static void Interpolate3DCPUBwd(const framework::ExecutionContext& ctx,
                                Tensor* input_grad, const Tensor output_grad) {
  auto* input = ctx.Input<Tensor>("X");
  const int n = input->dims()[0];
  const int c = input->dims()[1];
  const int in_d = input->dims()[2];
  const int in_h = input->dims()[3];
  const int in_w = input->dims()[4];

  auto interp_method = ctx.Attr<std::string>("interp_method");
  bool align_corners = ctx.Attr<bool>("align_corners");
  int align_mode = ctx.Attr<int>("align_mode");

  int out_d = ctx.Attr<int>("out_d");
  int out_h = ctx.Attr<int>("out_h");
  int out_w = ctx.Attr<int>("out_w");
674 675 676 677 678 679 680 681
  float scale;
  auto scale_tensor = ctx.Input<Tensor>("Scale");
  if (scale_tensor != nullptr) {
    auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
    scale = scale_data[0];
  } else {
    scale = ctx.Attr<float>("scale");
  }
K
Kaipeng Deng 已提交
682 683 684 685 686 687 688
  if (scale > 0) {
    out_d = static_cast<int>(in_d * scale);
    out_h = static_cast<int>(in_h * scale);
    out_w = static_cast<int>(in_w * scale);
  }
  auto out_size = ctx.Input<Tensor>("OutSize");
  if (out_size != nullptr) {
689
    auto out_size_data = get_new_data_from_tensor<int>(out_size);
K
Kaipeng Deng 已提交
690 691 692 693
    out_d = out_size_data[0];
    out_h = out_size_data[1];
    out_w = out_size_data[2];
  }
694 695 696 697 698 699 700 701
  auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
  if (list_new_size_tensor.size() > 0) {
    // have size tensor
    auto new_size = get_new_shape(list_new_size_tensor);
    out_d = new_size[0];
    out_h = new_size[1];
    out_w = new_size[2];
  }
702

K
Kaipeng Deng 已提交
703 704 705 706 707 708 709 710 711
  input_grad->mutable_data<T>({n, c, in_d, in_h, in_w}, ctx.GetPlace());
  auto& device_ctx = ctx.template device_context<platform::CPUDeviceContext>();
  math::SetConstant<platform::CPUDeviceContext, T> zero;
  zero(device_ctx, input_grad, static_cast<T>(0.0));

  if (in_d == out_d && in_h == out_h && in_w == out_w) {
    framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad);
    return;
  }
712

K
Kaipeng Deng 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
  float ratio_d = 0.f;
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_d > 1) {
    ratio_d = (align_corners) ? static_cast<float>(in_d - 1) / (out_d - 1)
                              : static_cast<float>(in_d) / out_d;
  }
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
  }
T
tink2123 已提交
728

K
Kaipeng Deng 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
  if ("trilinear" == interp_method) {
    TrilinearInterpolationGrad<T>(output_grad, input_grad, ratio_d, ratio_h,
                                  ratio_w, in_d, in_h, in_w, n, c, out_d, out_h,
                                  out_w, align_corners, align_mode);
  }
}

template <typename T>
class InterpolateKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");

    auto input_dims = input->dims();
    if (input_dims.size() == 4) {  // 2D interpolation
      Interpolate2DCPUFwd<T>(ctx, *input, output);
    } else if (input_dims.size() == 5) {  // 3D interpolation
      Interpolate3DCPUFwd<T>(ctx, *input, output);
T
tink2123 已提交
748
    }
K
Kaipeng Deng 已提交
749 750 751 752 753 754 755 756 757
  }
};

template <typename T>
class InterpolateGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
758

K
Kaipeng Deng 已提交
759 760 761 762 763
    auto output_grad_dims = output_grad->dims();
    if (output_grad_dims.size() == 4) {  // 2D interpolation grad
      Interpolate2DCPUBwd<T>(ctx, input_grad, *output_grad);
    } else if (output_grad_dims.size() == 5) {  // 3D interpolation grad
      Interpolate3DCPUBwd<T>(ctx, input_grad, *output_grad);
764 765 766 767 768 769
    }
  }
};

}  // namespace operators
}  // namespace paddle