interpolate_op.h 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <string>
14
#include <vector>
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;

template <typename T>
static void NearestNeighborInterpolate(const Tensor& input, Tensor* output,
                                       const float ratio_h, const float ratio_w,
                                       const int n, const int c,
30 31
                                       const int out_h, const int out_w,
                                       const bool align_corners) {
32 33 34
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
  for (int k = 0; k < out_h; k++) {  // loop for images
35 36
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
37 38

    for (int l = 0; l < out_w; l++) {
39 40
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
41 42 43 44 45 46 47 48 49 50 51 52 53 54

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          output_t(i, j, k, l) = input_t(i, j, in_k, in_l);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolation(const Tensor& input, Tensor* output,
                                  const float ratio_h, const float ratio_w,
                                  const int in_h, const int in_w, const int n,
55 56 57
                                  const int c, const int out_h, const int out_w,
                                  const bool align_corners,
                                  const bool align_mode) {
58 59
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
T
tink2123 已提交
60
  bool align_flag = (align_mode == 0 && !align_corners);
61 62 63 64 65 66 67 68 69 70 71

  std::vector<int> vy_n, vy_s;
  std::vector<float> vd_n, vd_s;
  vy_n.reserve(out_h);
  vy_s.reserve(out_h);
  vd_n.reserve(out_h);
  vd_s.reserve(out_h);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int k = 0; k < out_h; k++) {
T
tink2123 已提交
72 73
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
T
tink2123 已提交
74
    y_n = (y_n > 0) ? y_n : 0;
75
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
76 77 78
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
79
    float d_s = 1.f - d_n;
80 81 82 83 84 85 86
    {
      vy_n[k] = y_n;
      vy_s[k] = y_s;
      vd_n[k] = d_n;
      vd_s[k] = d_s;
    }
  }
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  std::vector<int> vx_w, vx_e;
  std::vector<float> vd_w, vd_e;
  vx_w.reserve(out_w);
  vx_e.reserve(out_w);
  vd_w.reserve(out_w);
  vd_e.reserve(out_w);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int l = 0; l < out_w; l++) {
    int x_w = (align_mode == 0 && !align_corners)
                  ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                  : static_cast<int>(ratio_w * l);
    x_w = (x_w > 0) ? x_w : 0;
    int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
103 104 105
    float idx_src_x = ratio_w * (l + 0.5) - 0.5;
    idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
    float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
106 107 108 109 110 111 112 113
    float d_e = 1.f - d_w;
    {
      vx_w[l] = x_w;
      vx_e[l] = x_e;
      vd_w[l] = d_w;
      vd_e[l] = d_e;
    }
  }
114

115 116 117 118 119 120 121
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(4)
#endif
  for (int i = 0; i < n; i++) {          // loop for batches
    for (int j = 0; j < c; j++) {        // loop for channels
      for (int k = 0; k < out_h; k++) {  // loop for images
        for (int l = 0; l < out_w; l++) {
122
          // bilinear interpolation
123 124 125 126 127
          T out_t = input_t(i, j, vy_n[k], vx_w[l]) * vd_s[k] * vd_e[l] +
                    input_t(i, j, vy_s[k], vx_w[l]) * vd_n[k] * vd_e[l] +
                    input_t(i, j, vy_n[k], vx_e[l]) * vd_s[k] * vd_w[l] +
                    input_t(i, j, vy_s[k], vx_e[l]) * vd_n[k] * vd_w[l];
          output_t(i, j, k, l) = out_t;
128 129 130 131 132 133 134
        }
      }
    }
  }
}

template <typename T>
135 136 137 138
static void NearestNeighborInterpolateGrad(
    const Tensor& output_grad, Tensor* input_grad, const float ratio_h,
    const float ratio_w, const int n, const int c, const int out_h,
    const int out_w, const bool align_corners) {
139 140
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
141

142
  for (int k = 0; k < out_h; k++) {  // loop for images
143 144
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
145 146

    for (int l = 0; l < out_w; l++) {
147 148
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolationGrad(const Tensor& output_grad,
                                      Tensor* input_grad, const float ratio_h,
                                      const float ratio_w, const int in_h,
                                      const int in_w, const int n, const int c,
164 165 166
                                      const int out_h, const int out_w,
                                      const bool align_corners,
                                      const int align_mode) {
167 168
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
T
tink2123 已提交
169
  bool align_flag = (align_mode == 0 && !align_corners);
170
  for (int k = 0; k < out_h; k++) {  // loop for images
T
tink2123 已提交
171 172
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
T
tink2123 已提交
173
    y_n = (y_n > 0) ? y_n : 0;
174
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
175 176 177
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
178 179 180
    float d_s = 1.f - d_n;

    for (int l = 0; l < out_w; l++) {
T
tink2123 已提交
181 182
      int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                           : static_cast<int>(ratio_w * l);
T
tink2123 已提交
183
      x_w = (x_w > 0) ? x_w : 0;
184
      int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
185 186 187
      float idx_src_x = ratio_w * (l + 0.5) - 0.5;
      idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
      float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
      float d_e = 1.f - d_w;

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          // bilinear interpolation grad
          const T grad = output_grad_t(i, j, k, l);
          input_grad_t(i, j, y_n, x_w) += static_cast<T>(grad * d_s * d_e);
          input_grad_t(i, j, y_s, x_w) += static_cast<T>(grad * d_n * d_e);
          input_grad_t(i, j, y_n, x_e) += static_cast<T>(grad * d_s * d_w);
          input_grad_t(i, j, y_s, x_e) += static_cast<T>(grad * d_n * d_w);
        }
      }
    }
  }
}
template <typename T>
class InterpolateKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");

D
dengkaipeng 已提交
210 211 212 213 214
    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int in_h = input->dims()[2];
    const int in_w = input->dims()[3];

215 216 217
    std::string interp_method = ctx.Attr<std::string>("interp_method");
    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
D
dengkaipeng 已提交
218 219 220

    float scale = ctx.Attr<float>("scale");
    if (scale > 0) {
D
dengkaipeng 已提交
221 222
      out_h = static_cast<int>(in_h * scale);
      out_w = static_cast<int>(in_w * scale);
D
dengkaipeng 已提交
223 224
    }

225 226 227 228 229 230
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (out_size != nullptr) {
      auto out_size_data = out_size->data<int>();
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
231 232
    bool align_corners = ctx.Attr<bool>("align_corners");
    int align_mode = ctx.Attr<int>("align_mode");
233 234 235 236 237 238 239 240 241 242 243 244

    output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
    auto& device_ctx =
        ctx.template device_context<platform::CPUDeviceContext>();
    math::SetConstant<platform::CPUDeviceContext, T> zero;
    zero(device_ctx, output, static_cast<T>(0.0));

    if (in_h == out_h && in_w == out_w) {
      framework::TensorCopy(*input, ctx.GetPlace(), output);
      return;
    }

T
tink2123 已提交
245 246 247 248 249 250 251 252
    float ratio_h = 0.f;
    float ratio_w = 0.f;

    if (out_h > 1) {
      ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                                : static_cast<float>(in_h) / out_h;
    }
    if (out_w > 1) {
T
tink2123 已提交
253 254
      ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                                : static_cast<float>(in_w) / out_w;
T
tink2123 已提交
255
    }
256 257 258

    if ("bilinear" == interp_method) {
      BilinearInterpolation<T>(*input, output, ratio_h, ratio_w, in_h, in_w, n,
259
                               c, out_h, out_w, align_corners, align_mode);
260 261
    } else if ("nearest" == interp_method) {
      NearestNeighborInterpolate<T>(*input, output, ratio_h, ratio_w, n, c,
262
                                    out_h, out_w, align_corners);
263 264 265 266 267 268 269 270 271 272 273 274
    }
  }
};

template <typename T>
class InterpolateGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));

D
dengkaipeng 已提交
275 276 277 278 279
    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int in_h = input->dims()[2];
    const int in_w = input->dims()[3];

280 281 282
    std::string interp_method = ctx.Attr<std::string>("interp_method");
    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
D
dengkaipeng 已提交
283 284 285

    float scale = ctx.Attr<float>("scale");
    if (scale > 0) {
D
dengkaipeng 已提交
286 287
      out_h = static_cast<int>(in_h * scale);
      out_w = static_cast<int>(in_w * scale);
D
dengkaipeng 已提交
288 289
    }

290 291 292 293 294 295
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (out_size != nullptr) {
      auto out_size_data = out_size->data<int>();
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
D
dengkaipeng 已提交
296

297 298
    bool align_corners = ctx.Attr<bool>("align_corners");
    int align_mode = ctx.Attr<int>("align_mode");
299 300 301 302 303 304 305 306 307 308 309 310

    input_grad->mutable_data<T>({n, c, in_h, in_w}, ctx.GetPlace());
    auto& device_ctx =
        ctx.template device_context<platform::CPUDeviceContext>();
    math::SetConstant<platform::CPUDeviceContext, T> zero;
    zero(device_ctx, input_grad, static_cast<T>(0.0));

    if (in_h == out_h && in_w == out_w) {
      framework::TensorCopy(*output_grad, ctx.GetPlace(), input_grad);
      return;
    }

T
tink2123 已提交
311 312 313 314 315 316 317 318
    float ratio_h = 0.f;
    float ratio_w = 0.f;

    if (out_h > 1) {
      ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                                : static_cast<float>(in_h) / out_h;
    }
    if (out_w > 1) {
T
tink2123 已提交
319 320
      ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                                : static_cast<float>(in_w) / out_w;
T
tink2123 已提交
321
    }
322 323 324

    if ("bilinear" == interp_method) {
      BilinearInterpolationGrad<T>(*output_grad, input_grad, ratio_h, ratio_w,
325 326
                                   in_h, in_w, n, c, out_h, out_w,
                                   align_corners, align_mode);
327 328
    } else if ("nearest" == interp_method) {
      NearestNeighborInterpolateGrad<T>(*output_grad, input_grad, ratio_h,
329 330
                                        ratio_w, n, c, out_h, out_w,
                                        align_corners);
331 332 333 334 335 336
    }
  }
};

}  // namespace operators
}  // namespace paddle