interpolate_op.h 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <string>
14
#include <vector>
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;

template <typename T>
static void NearestNeighborInterpolate(const Tensor& input, Tensor* output,
                                       const float ratio_h, const float ratio_w,
                                       const int n, const int c,
30 31
                                       const int out_h, const int out_w,
                                       const bool align_corners) {
32 33 34
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
  for (int k = 0; k < out_h; k++) {  // loop for images
35 36
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
37 38

    for (int l = 0; l < out_w; l++) {
39 40
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
41 42 43 44 45 46 47 48 49 50 51 52 53 54

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          output_t(i, j, k, l) = input_t(i, j, in_k, in_l);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolation(const Tensor& input, Tensor* output,
                                  const float ratio_h, const float ratio_w,
                                  const int in_h, const int in_w, const int n,
55 56 57
                                  const int c, const int out_h, const int out_w,
                                  const bool align_corners,
                                  const bool align_mode) {
58 59
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
T
tink2123 已提交
60
  bool align_flag = (align_mode == 0 && !align_corners);
61 62 63 64 65 66 67 68 69 70 71

  std::vector<int> vy_n, vy_s;
  std::vector<float> vd_n, vd_s;
  vy_n.reserve(out_h);
  vy_s.reserve(out_h);
  vd_n.reserve(out_h);
  vd_s.reserve(out_h);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int k = 0; k < out_h; k++) {
T
tink2123 已提交
72 73
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
T
tink2123 已提交
74
    y_n = (y_n > 0) ? y_n : 0;
75
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
76 77 78
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
79
    float d_s = 1.f - d_n;
80 81 82 83 84 85 86
    {
      vy_n[k] = y_n;
      vy_s[k] = y_s;
      vd_n[k] = d_n;
      vd_s[k] = d_s;
    }
  }
87

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  std::vector<int> vx_w, vx_e;
  std::vector<float> vd_w, vd_e;
  vx_w.reserve(out_w);
  vx_e.reserve(out_w);
  vd_w.reserve(out_w);
  vd_e.reserve(out_w);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int l = 0; l < out_w; l++) {
    int x_w = (align_mode == 0 && !align_corners)
                  ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                  : static_cast<int>(ratio_w * l);
    x_w = (x_w > 0) ? x_w : 0;
    int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
103 104 105
    float idx_src_x = ratio_w * (l + 0.5) - 0.5;
    idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
    float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
106 107 108 109 110 111 112 113
    float d_e = 1.f - d_w;
    {
      vx_w[l] = x_w;
      vx_e[l] = x_e;
      vd_w[l] = d_w;
      vd_e[l] = d_e;
    }
  }
114

115 116 117 118 119 120 121
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(4)
#endif
  for (int i = 0; i < n; i++) {          // loop for batches
    for (int j = 0; j < c; j++) {        // loop for channels
      for (int k = 0; k < out_h; k++) {  // loop for images
        for (int l = 0; l < out_w; l++) {
122
          // bilinear interpolation
123 124 125 126 127
          T out_t = input_t(i, j, vy_n[k], vx_w[l]) * vd_s[k] * vd_e[l] +
                    input_t(i, j, vy_s[k], vx_w[l]) * vd_n[k] * vd_e[l] +
                    input_t(i, j, vy_n[k], vx_e[l]) * vd_s[k] * vd_w[l] +
                    input_t(i, j, vy_s[k], vx_e[l]) * vd_n[k] * vd_w[l];
          output_t(i, j, k, l) = out_t;
128 129 130 131 132 133
        }
      }
    }
  }
}

K
Kaipeng Deng 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
template <typename T>
static void TrilinearInterpolation(
    const Tensor& input, Tensor* output, const float ratio_d,
    const float ratio_h, const float ratio_w, const int in_d, const int in_h,
    const int in_w, const int n, const int c, const int out_d, const int out_h,
    const int out_w, const bool align_corners, const bool align_mode) {
  auto input_t = EigenTensor<T, 5>::From(input);
  auto output_t = EigenTensor<T, 5>::From(*output);
  bool align_flag = (align_mode == 0 && !align_corners);

  std::vector<int> vt_f, vt_b;
  std::vector<float> vd_f, vd_b;
  vt_f.reserve(out_d);
  vt_b.reserve(out_d);
  vd_f.reserve(out_d);
  vd_b.reserve(out_d);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int j = 0; j < out_d; j++) {
    int t_f = align_flag ? static_cast<int>(ratio_d * (j + 0.5) - 0.5)
                         : static_cast<int>(ratio_d * j);
    t_f = (t_f > 0) ? t_f : 0;
    int t_b = (t_f + 1) < (in_d - 1) ? (t_f + 1) : (in_d - 1);
    float idx_src_t = ratio_d * (j + 0.5) - 0.5;
    idx_src_t = (idx_src_t > 0) ? idx_src_t : 0;
    float d_f = align_flag ? idx_src_t - t_f : ratio_d * j - t_f;
    float d_b = 1.f - d_f;
    {
      vt_f[j] = t_f;
      vt_b[j] = t_b;
      vd_f[j] = d_f;
      vd_b[j] = d_b;
    }
  }

  std::vector<int> vy_n, vy_s;
  std::vector<float> vd_n, vd_s;
  vy_n.reserve(out_h);
  vy_s.reserve(out_h);
  vd_n.reserve(out_h);
  vd_s.reserve(out_h);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int k = 0; k < out_h; k++) {
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
    y_n = (y_n > 0) ? y_n : 0;
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
    float d_s = 1.f - d_n;
    {
      vy_n[k] = y_n;
      vy_s[k] = y_s;
      vd_n[k] = d_n;
      vd_s[k] = d_s;
    }
  }

  std::vector<int> vx_w, vx_e;
  std::vector<float> vd_w, vd_e;
  vx_w.reserve(out_w);
  vx_e.reserve(out_w);
  vd_w.reserve(out_w);
  vd_e.reserve(out_w);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int l = 0; l < out_w; l++) {
    int x_w = (align_mode == 0 && !align_corners)
                  ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                  : static_cast<int>(ratio_w * l);
    x_w = (x_w > 0) ? x_w : 0;
    int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
    float idx_src_x = ratio_w * (l + 0.5) - 0.5;
    idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
    float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
    float d_e = 1.f - d_w;
    {
      vx_w[l] = x_w;
      vx_e[l] = x_e;
      vd_w[l] = d_w;
      vd_e[l] = d_e;
    }
  }

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(5)
#endif
  for (int b = 0; b < n; b++) {          // loop for batches
    for (int i = 0; i < c; i++) {        // loop for channels
      for (int j = 0; j < out_d; j++) {  // loop for D, H, W
        for (int k = 0; k < out_h; k++) {
          for (int l = 0; l < out_w; l++) {
            // trilinear interpolation
            T out_t = input_t(b, i, vt_f[j], vy_n[k], vx_w[l]) * vd_b[j] *
                          vd_s[k] * vd_e[l] +
                      input_t(b, i, vt_f[j], vy_n[k], vx_e[l]) * vd_b[j] *
                          vd_s[k] * vd_w[l] +
                      input_t(b, i, vt_f[j], vy_s[k], vx_w[l]) * vd_b[j] *
                          vd_n[k] * vd_e[l] +
                      input_t(b, i, vt_f[j], vy_s[k], vx_e[l]) * vd_b[j] *
                          vd_n[k] * vd_w[l] +
                      input_t(b, i, vt_b[j], vy_n[k], vx_w[l]) * vd_f[j] *
                          vd_s[k] * vd_e[l] +
                      input_t(b, i, vt_b[j], vy_n[k], vx_e[l]) * vd_f[j] *
                          vd_s[k] * vd_w[l] +
                      input_t(b, i, vt_b[j], vy_s[k], vx_w[l]) * vd_f[j] *
                          vd_n[k] * vd_e[l] +
                      input_t(b, i, vt_b[j], vy_s[k], vx_e[l]) * vd_f[j] *
                          vd_n[k] * vd_w[l];
            output_t(b, i, j, k, l) = out_t;
          }
        }
      }
    }
  }
}

256
template <typename T>
257 258 259 260
static void NearestNeighborInterpolateGrad(
    const Tensor& output_grad, Tensor* input_grad, const float ratio_h,
    const float ratio_w, const int n, const int c, const int out_h,
    const int out_w, const bool align_corners) {
261 262
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
263

264
  for (int k = 0; k < out_h; k++) {  // loop for images
265 266
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
267 268

    for (int l = 0; l < out_w; l++) {
269 270
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolationGrad(const Tensor& output_grad,
                                      Tensor* input_grad, const float ratio_h,
                                      const float ratio_w, const int in_h,
                                      const int in_w, const int n, const int c,
286 287 288
                                      const int out_h, const int out_w,
                                      const bool align_corners,
                                      const int align_mode) {
289 290
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
T
tink2123 已提交
291
  bool align_flag = (align_mode == 0 && !align_corners);
292
  for (int k = 0; k < out_h; k++) {  // loop for images
T
tink2123 已提交
293 294
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
T
tink2123 已提交
295
    y_n = (y_n > 0) ? y_n : 0;
296
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
297 298 299
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
300 301 302
    float d_s = 1.f - d_n;

    for (int l = 0; l < out_w; l++) {
T
tink2123 已提交
303 304
      int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                           : static_cast<int>(ratio_w * l);
T
tink2123 已提交
305
      x_w = (x_w > 0) ? x_w : 0;
306
      int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
307 308 309
      float idx_src_x = ratio_w * (l + 0.5) - 0.5;
      idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
      float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
      float d_e = 1.f - d_w;

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          // bilinear interpolation grad
          const T grad = output_grad_t(i, j, k, l);
          input_grad_t(i, j, y_n, x_w) += static_cast<T>(grad * d_s * d_e);
          input_grad_t(i, j, y_s, x_w) += static_cast<T>(grad * d_n * d_e);
          input_grad_t(i, j, y_n, x_e) += static_cast<T>(grad * d_s * d_w);
          input_grad_t(i, j, y_s, x_e) += static_cast<T>(grad * d_n * d_w);
        }
      }
    }
  }
}
K
Kaipeng Deng 已提交
325

326
template <typename T>
K
Kaipeng Deng 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
static void TrilinearInterpolationGrad(
    const Tensor& output_grad, Tensor* input_grad, const float ratio_d,
    const float ratio_h, const float ratio_w, const int in_d, const int in_h,
    const int in_w, const int n, const int c, const int out_d, const int out_h,
    const int out_w, const bool align_corners, const int align_mode) {
  auto input_grad_t = EigenTensor<T, 5>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 5>::From(output_grad);
  bool align_flag = (align_mode == 0 && !align_corners);
  for (int j = 0; j < out_d; j++) {  // loop for D
    int t_f = align_flag ? static_cast<int>(ratio_d * (j + 0.5) - 0.5)
                         : static_cast<int>(ratio_d * j);
    t_f = (t_f > 0) ? t_f : 0;
    int t_b = (t_f + 1) < (in_d - 1) ? (t_f + 1) : (in_d - 1);
    float idx_src_t = ratio_d * (j + 0.5) - 0.5;
    idx_src_t = (idx_src_t > 0) ? idx_src_t : 0;
    float d_f = align_flag ? idx_src_t - t_f : ratio_d * j - t_f;
    float d_b = 1.f - d_f;

    for (int k = 0; k < out_h; k++) {  // loop for H
      int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                           : static_cast<int>(ratio_h * k);
      y_n = (y_n > 0) ? y_n : 0;
      int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
      float idx_src_y = ratio_h * (k + 0.5) - 0.5;
      idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
      float d_n = align_flag ? idx_src_y - y_n : ratio_h * k - y_n;
      float d_s = 1.f - d_n;

      for (int l = 0; l < out_w; l++) {  // loop for W
        int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                             : static_cast<int>(ratio_w * l);
        x_w = (x_w > 0) ? x_w : 0;
        int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
        float idx_src_x = ratio_w * (l + 0.5) - 0.5;
        idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
        float d_w = align_flag ? idx_src_x - x_w : ratio_w * l - x_w;
        float d_e = 1.f - d_w;

        for (int b = 0; b < n; b++) {    // loop for batches
          for (int i = 0; i < c; i++) {  // loop for channels
            // trilinear interpolation grad
            const T grad = output_grad_t(b, i, j, k, l);
            input_grad_t(b, i, t_f, y_n, x_w) +=
                static_cast<T>(grad * d_b * d_s * d_e);
            input_grad_t(b, i, t_f, y_n, x_e) +=
                static_cast<T>(grad * d_b * d_s * d_w);
            input_grad_t(b, i, t_f, y_s, x_w) +=
                static_cast<T>(grad * d_b * d_n * d_e);
            input_grad_t(b, i, t_f, y_s, x_e) +=
                static_cast<T>(grad * d_b * d_n * d_w);
            input_grad_t(b, i, t_b, y_n, x_w) +=
                static_cast<T>(grad * d_f * d_s * d_e);
            input_grad_t(b, i, t_b, y_n, x_e) +=
                static_cast<T>(grad * d_f * d_s * d_w);
            input_grad_t(b, i, t_b, y_s, x_w) +=
                static_cast<T>(grad * d_f * d_n * d_e);
            input_grad_t(b, i, t_b, y_s, x_e) +=
                static_cast<T>(grad * d_f * d_n * d_w);
          }
        }
      }
    }
  }
}
391

K
Kaipeng Deng 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
template <typename T>
static void Interpolate2DCPUFwd(const framework::ExecutionContext& ctx,
                                const Tensor& input, Tensor* output) {
  const int n = input.dims()[0];
  const int c = input.dims()[1];
  const int in_h = input.dims()[2];
  const int in_w = input.dims()[3];

  auto interp_method = ctx.Attr<std::string>("interp_method");
  bool align_corners = ctx.Attr<bool>("align_corners");
  int align_mode = ctx.Attr<int>("align_mode");

  int out_h = ctx.Attr<int>("out_h");
  int out_w = ctx.Attr<int>("out_w");
  float scale = ctx.Attr<float>("scale");
  if (scale > 0) {
    out_h = static_cast<int>(in_h * scale);
    out_w = static_cast<int>(in_w * scale);
  }
D
dengkaipeng 已提交
411

K
Kaipeng Deng 已提交
412 413 414 415 416 417
  auto out_size = ctx.Input<Tensor>("OutSize");
  if (out_size != nullptr) {
    auto out_size_data = out_size->data<int>();
    out_h = out_size_data[0];
    out_w = out_size_data[1];
  }
D
dengkaipeng 已提交
418

K
Kaipeng Deng 已提交
419
  output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
D
dengkaipeng 已提交
420

K
Kaipeng Deng 已提交
421 422 423 424
  if (in_h == out_h && in_w == out_w) {
    framework::TensorCopy(input, ctx.GetPlace(), output);
    return;
  }
425

K
Kaipeng Deng 已提交
426 427 428 429 430 431 432 433 434 435
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
  }
T
tink2123 已提交
436

K
Kaipeng Deng 已提交
437 438 439 440 441 442 443 444
  if ("bilinear" == interp_method) {
    BilinearInterpolation<T>(input, output, ratio_h, ratio_w, in_h, in_w, n, c,
                             out_h, out_w, align_corners, align_mode);
  } else if ("nearest" == interp_method) {
    NearestNeighborInterpolate<T>(input, output, ratio_h, ratio_w, n, c, out_h,
                                  out_w, align_corners);
  }
}
445

K
Kaipeng Deng 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
template <typename T>
static void Interpolate3DCPUFwd(const framework::ExecutionContext& ctx,
                                const Tensor& input, Tensor* output) {
  const int n = input.dims()[0];
  const int c = input.dims()[1];
  const int in_d = input.dims()[2];
  const int in_h = input.dims()[3];
  const int in_w = input.dims()[4];

  auto interp_method = ctx.Attr<std::string>("interp_method");
  bool align_corners = ctx.Attr<bool>("align_corners");
  int align_mode = ctx.Attr<int>("align_mode");

  int out_d = ctx.Attr<int>("out_d");
  int out_h = ctx.Attr<int>("out_h");
  int out_w = ctx.Attr<int>("out_w");
  float scale = ctx.Attr<float>("scale");
  if (scale > 0) {
    out_d = static_cast<int>(in_d * scale);
    out_h = static_cast<int>(in_h * scale);
    out_w = static_cast<int>(in_w * scale);
  }

  auto out_size = ctx.Input<Tensor>("OutSize");
  if (out_size != nullptr) {
    auto out_size_data = out_size->data<int>();
    out_d = out_size_data[0];
    out_h = out_size_data[1];
    out_w = out_size_data[2];
  }

  output->mutable_data<T>({n, c, out_d, out_h, out_w}, ctx.GetPlace());

  if (in_d == out_d && in_h == out_h && in_w == out_w) {
    framework::TensorCopy(input, ctx.GetPlace(), output);
    return;
  }

  float ratio_d = 0.f;
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_d > 1) {
    ratio_d = (align_corners) ? static_cast<float>(in_d - 1) / (out_d - 1)
                              : static_cast<float>(in_d) / out_d;
  }
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
498
  }
K
Kaipeng Deng 已提交
499 500 501 502 503 504 505

  if ("trilinear" == interp_method) {
    TrilinearInterpolation<T>(input, output, ratio_d, ratio_h, ratio_w, in_d,
                              in_h, in_w, n, c, out_d, out_h, out_w,
                              align_corners, align_mode);
  }
}
506 507

template <typename T>
K
Kaipeng Deng 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
static void Interpolate2DCPUBwd(const framework::ExecutionContext& ctx,
                                Tensor* input_grad, const Tensor& output_grad) {
  auto* input = ctx.Input<Tensor>("X");
  const int n = input->dims()[0];
  const int c = input->dims()[1];
  const int in_h = input->dims()[2];
  const int in_w = input->dims()[3];

  auto interp_method = ctx.Attr<std::string>("interp_method");
  bool align_corners = ctx.Attr<bool>("align_corners");
  int align_mode = ctx.Attr<int>("align_mode");

  int out_h = ctx.Attr<int>("out_h");
  int out_w = ctx.Attr<int>("out_w");
  float scale = ctx.Attr<float>("scale");
  if (scale > 0) {
    out_h = static_cast<int>(in_h * scale);
    out_w = static_cast<int>(in_w * scale);
  }
527

K
Kaipeng Deng 已提交
528 529 530 531 532 533
  auto out_size = ctx.Input<Tensor>("OutSize");
  if (out_size != nullptr) {
    auto out_size_data = out_size->data<int>();
    out_h = out_size_data[0];
    out_w = out_size_data[1];
  }
D
dengkaipeng 已提交
534

K
Kaipeng Deng 已提交
535 536 537 538
  input_grad->mutable_data<T>({n, c, in_h, in_w}, ctx.GetPlace());
  auto& device_ctx = ctx.template device_context<platform::CPUDeviceContext>();
  math::SetConstant<platform::CPUDeviceContext, T> zero;
  zero(device_ctx, input_grad, static_cast<T>(0.0));
D
dengkaipeng 已提交
539

K
Kaipeng Deng 已提交
540 541 542 543
  if (in_h == out_h && in_w == out_w) {
    framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad);
    return;
  }
D
dengkaipeng 已提交
544

K
Kaipeng Deng 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
  }

  if ("bilinear" == interp_method) {
    BilinearInterpolationGrad<T>(output_grad, input_grad, ratio_h, ratio_w,
                                 in_h, in_w, n, c, out_h, out_w, align_corners,
                                 align_mode);
  } else if ("nearest" == interp_method) {
    NearestNeighborInterpolateGrad<T>(output_grad, input_grad, ratio_h, ratio_w,
                                      n, c, out_h, out_w, align_corners);
  }
}
D
dengkaipeng 已提交
565

K
Kaipeng Deng 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
template <typename T>
static void Interpolate3DCPUBwd(const framework::ExecutionContext& ctx,
                                Tensor* input_grad, const Tensor output_grad) {
  auto* input = ctx.Input<Tensor>("X");
  const int n = input->dims()[0];
  const int c = input->dims()[1];
  const int in_d = input->dims()[2];
  const int in_h = input->dims()[3];
  const int in_w = input->dims()[4];

  auto interp_method = ctx.Attr<std::string>("interp_method");
  bool align_corners = ctx.Attr<bool>("align_corners");
  int align_mode = ctx.Attr<int>("align_mode");

  int out_d = ctx.Attr<int>("out_d");
  int out_h = ctx.Attr<int>("out_h");
  int out_w = ctx.Attr<int>("out_w");
  float scale = ctx.Attr<float>("scale");
  if (scale > 0) {
    out_d = static_cast<int>(in_d * scale);
    out_h = static_cast<int>(in_h * scale);
    out_w = static_cast<int>(in_w * scale);
  }
589

K
Kaipeng Deng 已提交
590 591 592 593 594 595 596
  auto out_size = ctx.Input<Tensor>("OutSize");
  if (out_size != nullptr) {
    auto out_size_data = out_size->data<int>();
    out_d = out_size_data[0];
    out_h = out_size_data[1];
    out_w = out_size_data[2];
  }
597

K
Kaipeng Deng 已提交
598 599 600 601 602 603 604 605 606
  input_grad->mutable_data<T>({n, c, in_d, in_h, in_w}, ctx.GetPlace());
  auto& device_ctx = ctx.template device_context<platform::CPUDeviceContext>();
  math::SetConstant<platform::CPUDeviceContext, T> zero;
  zero(device_ctx, input_grad, static_cast<T>(0.0));

  if (in_d == out_d && in_h == out_h && in_w == out_w) {
    framework::TensorCopy(output_grad, ctx.GetPlace(), input_grad);
    return;
  }
607

K
Kaipeng Deng 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
  float ratio_d = 0.f;
  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_d > 1) {
    ratio_d = (align_corners) ? static_cast<float>(in_d - 1) / (out_d - 1)
                              : static_cast<float>(in_d) / out_d;
  }
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                              : static_cast<float>(in_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                              : static_cast<float>(in_w) / out_w;
  }
T
tink2123 已提交
623

K
Kaipeng Deng 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
  if ("trilinear" == interp_method) {
    TrilinearInterpolationGrad<T>(output_grad, input_grad, ratio_d, ratio_h,
                                  ratio_w, in_d, in_h, in_w, n, c, out_d, out_h,
                                  out_w, align_corners, align_mode);
  }
}

template <typename T>
class InterpolateKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");

    auto input_dims = input->dims();
    if (input_dims.size() == 4) {  // 2D interpolation
      Interpolate2DCPUFwd<T>(ctx, *input, output);
    } else if (input_dims.size() == 5) {  // 3D interpolation
      Interpolate3DCPUFwd<T>(ctx, *input, output);
T
tink2123 已提交
643
    }
K
Kaipeng Deng 已提交
644 645 646 647 648 649 650 651 652
  }
};

template <typename T>
class InterpolateGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
653

K
Kaipeng Deng 已提交
654 655 656 657 658
    auto output_grad_dims = output_grad->dims();
    if (output_grad_dims.size() == 4) {  // 2D interpolation grad
      Interpolate2DCPUBwd<T>(ctx, input_grad, *output_grad);
    } else if (output_grad_dims.size() == 5) {  // 3D interpolation grad
      Interpolate3DCPUBwd<T>(ctx, input_grad, *output_grad);
659 660 661 662 663 664
    }
  }
};

}  // namespace operators
}  // namespace paddle