dataset.py 25.4 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""This is defination of dataset class, which is high performance IO."""
D
dongdaxiang 已提交
15 16 17 18

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
D
dongdaxiang 已提交
19
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
20 21 22


class DatasetFactory(object):
23 24
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
25
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
26 27 28
    the default is "QueueDataset".

    Example:
29 30 31 32 33
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

34
    """
D
dongdaxiang 已提交
35

D
dongdaxiang 已提交
36
    def __init__(self):
37
        """ Init. """
D
dongdaxiang 已提交
38 39
        pass

40
    def create_dataset(self, datafeed_class="QueueDataset"):
41
        """
H
hutuxian 已提交
42
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
43
        the default is "QueueDataset".
D
dongdaxiang 已提交
44

45 46 47 48
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
49
        Examples:
50 51 52 53 54
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

55
        """
D
dongdaxiang 已提交
56 57
        try:
            dataset = globals()[datafeed_class]()
58
            return dataset
D
dongdaxiang 已提交
59 60 61 62 63 64
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
65
    """ Base dataset class. """
D
dongdaxiang 已提交
66

D
dongdaxiang 已提交
67
    def __init__(self):
68
        """ Init. """
D
dongdaxiang 已提交
69 70 71 72
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
73
        self.dataset = core.Dataset("MultiSlotDataset")
74
        self.thread_num = 1
J
jiaqi 已提交
75
        self.filelist = []
D
dongdaxiang 已提交
76 77 78 79 80 81

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

82 83 84 85 86 87
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
88 89

        Args:
90
            pipe_command(str): pipe command
91

D
dongdaxiang 已提交
92 93 94
        """
        self.proto_desc.pipe_command = pipe_command

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    def set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
            fea_eval(bool): wheather enable fea eval mode to enable slots shuffle.
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

D
dongdaxiang 已提交
140 141 142 143
    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

144 145 146 147 148 149
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
150 151

        Args:
152
            batch_size(int): batch size
D
dongdaxiang 已提交
153 154 155 156

        """
        self.proto_desc.batch_size = batch_size

157
    def set_thread(self, thread_num):
158 159 160
        """
        Set thread num, it is the num of readers.

161 162 163 164 165 166
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
167 168

        Args:
169
            thread_num(int): thread num
170
        """
171
        self.dataset.set_thread_num(thread_num)
172
        self.thread_num = thread_num
173 174

    def set_filelist(self, filelist):
175 176 177
        """
        Set file list in current worker.

178 179 180 181 182 183
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
184 185

        Args:
186
            filelist(list): file list
187
        """
188
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
189
        self.filelist = filelist
190

D
dongdaxiang 已提交
191
    def set_use_var(self, var_list):
192 193 194
        """
        Set Variables which you will use.

195 196 197 198 199 200
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
201 202

        Args:
203
            var_list(list): variable list
204
        """
205
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
206
        for var in var_list:
207
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
208 209 210 211
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
212
                slot_var.shape.extend(var.shape)
213
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
214
                slot_var.type = "float"
215
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
216 217 218 219 220 221
                slot_var.type = "uint64"
            else:
                raise ValueError(
                    "Currently, fluid.dataset only supports dtype=float32 and dtype=int64"
                )

222
    def set_hdfs_config(self, fs_name, fs_ugi):
223 224 225
        """
        Set hdfs config: fs name ad ugi

226 227 228 229 230 231
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
232 233

        Args:
234 235
            fs_name(str): fs name
            fs_ugi(str): fs ugi
236
        """
237 238
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

239
    def _prepare_to_run(self):
240 241 242 243
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
244 245 246
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
247
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
248 249 250 251
        self.dataset.create_readers()

    def _finish_to_run(self):
        self.dataset.destroy_readers()
252

D
dongdaxiang 已提交
253 254 255 256
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

257 258 259 260 261 262
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
263 264 265 266 267 268

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

269 270 271 272 273 274
    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass

D
dongdaxiang 已提交
275 276

class InMemoryDataset(DatasetBase):
277 278
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
279 280
    and shuffle data before training.
    This class should be created by DatasetFactory
281 282

    Example:
283
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
284
    """
D
dongdaxiang 已提交
285

D
dongdaxiang 已提交
286
    def __init__(self):
287
        """ Init. """
288 289
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
290
        self.fleet_send_batch_size = None
291
        self.is_user_set_queue_num = False
J
jiaqi 已提交
292
        self.queue_num = None
293 294
        self.parse_ins_id = False
        self.parse_content = False
295
        self.merge_by_lineid = False
296
        self.fleet_send_sleep_seconds = None
J
jiaqi 已提交
297 298 299 300 301 302

    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
303
        if self.thread_num <= 0:
304
            self.thread_num = 1
J
jiaqi 已提交
305 306 307 308
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
309 310
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
J
jiaqi 已提交
311 312 313 314
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

315 316 317 318 319 320 321 322 323 324
    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num)
        self.dataset.dynamic_adjust_readers_num(thread_num)

    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(self.thread_num)
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

J
jiaqi 已提交
325 326 327 328 329
    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
330
            queue_num(int): dataset output queue num
J
jiaqi 已提交
331 332 333 334 335 336 337 338 339

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
340
        self.is_user_set_queue_num = True
J
jiaqi 已提交
341 342
        self.queue_num = queue_num

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    def set_parse_ins_id(self, parse_ins_id):
        """
        Set id Dataset need to parse insid

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_ins_id(True)

        """
        self.parse_ins_id = parse_ins_id

    def set_parse_content(self, parse_content):
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_content(True)

        """
        self.parse_content = parse_content

377
    def set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
J
jiaqi 已提交
378
        """
379
        Set fleet send batch size, default is 1024
J
jiaqi 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    def set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_sleep_seconds(2)

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

411
    def set_merge_by_lineid(self, merge_size=2):
412 413 414 415 416
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
417
            merge_size(int): ins size to merge. default is 2.
418 419 420 421 422 423 424 425 426

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_lineid()

        """
427
        self.dataset.set_merge_by_lineid(merge_size)
428
        self.merge_by_lineid = True
429
        self.parse_ins_id = True
430

431
    def load_into_memory(self):
432 433 434
        """
        Load data into memory

435 436 437 438 439 440 441 442
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
443
        """
444
        self._prepare_to_run()
445
        self.dataset.load_into_memory()
D
dongdaxiang 已提交
446

447
    def preload_into_memory(self, thread_num=None):
J
jiaqi 已提交
448 449 450
        """
        Load data into memory in async mode

451 452 453
        Args:
            thread_num(int): preload thread num

J
jiaqi 已提交
454 455 456 457 458 459 460 461 462 463 464
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
465 466 467 468
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
J
jiaqi 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
        self.dataset.preload_into_memory()

    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()
486
        self.dataset.destroy_preload_readers()
J
jiaqi 已提交
487

D
dongdaxiang 已提交
488
    def local_shuffle(self):
489 490 491
        """
        Local shuffle

492 493 494 495 496 497 498 499 500
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
501
        """
502
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
503

504
    def global_shuffle(self, fleet=None, thread_num=12):
505 506
        """
        Global shuffle.
507 508 509
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
510

511
        Examples:
512 513 514 515 516 517 518 519 520
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
521 522

        Args:
523
            fleet(Fleet): fleet singleton. Default None.
524
            thread_num(int): shuffle thread num. Default is 12.
525

526
        """
527 528
        trainer_num = 1
        if fleet is not None:
529
            fleet._role_maker._barrier_worker()
530
            trainer_num = fleet.worker_num()
531
        if self.fleet_send_batch_size is None:
532 533 534
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
535
        self.dataset.register_client2client_msg_handler()
536
        self.dataset.set_trainer_num(trainer_num)
J
jiaqi 已提交
537
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
538
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
539
        if fleet is not None:
540
            fleet._role_maker._barrier_worker()
541
        self.dataset.global_shuffle(thread_num)
542
        if fleet is not None:
543
            fleet._role_maker._barrier_worker()
544 545 546 547
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
            fleet._role_maker._barrier_worker()
D
dongdaxiang 已提交
548

549 550 551 552
    def release_memory(self):
        """
        Release InMemoryDataset memory data, when data will not be used again.

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

568 569
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
570

571 572 573 574 575 576 577 578 579 580 581 582 583 584
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

585 586 587 588 589 590 591 592 593 594
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
            fleet._role_maker._node_type_comm.Allreduce(local_data_size,
                                                        global_data_size)
            return global_data_size[0]
        return local_data_size[0]

    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

622 623 624 625 626 627 628 629 630 631 632
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
633 634 635 636 637 638 639 640 641 642 643 644

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
            fleet._role_maker._node_type_comm.Allreduce(local_data_size,
                                                        global_data_size)
            return global_data_size[0]
        return local_data_size[0]

X
xjqbest 已提交
645

D
dongdaxiang 已提交
646
class QueueDataset(DatasetBase):
647 648 649
    """
    QueueDataset, it will process data streamly.

650 651 652 653 654 655
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

656
    """
D
dongdaxiang 已提交
657

D
dongdaxiang 已提交
658
    def __init__(self):
659
        """
D
dongdaxiang 已提交
660 661
        Initialize QueueDataset
        This class should be created by DatasetFactory
662
        """
663
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
664
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
665

666 667 668 669 670 671 672 673 674 675 676 677 678 679
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_readers()

X
xujiaqi01 已提交
680
    def local_shuffle(self):
681
        """
682
        Local shuffle data.
D
dongdaxiang 已提交
683

D
dongdaxiang 已提交
684 685
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
686 687 688 689 690 691 692 693

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

694 695 696
        Raises:
            NotImplementedError: QueueDataset does not support local shuffle

697
        """
D
dongdaxiang 已提交
698 699 700
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
701

702
    def global_shuffle(self, fleet=None):
703
        """
704 705
        Global shuffle data.

D
dongdaxiang 已提交
706 707
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
708

709 710 711
        Args:
            fleet(Fleet): fleet singleton. Default None.

712 713 714 715 716 717 718 719
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

720 721 722
        Raises:
            NotImplementedError: QueueDataset does not support global shuffle

723
        """
D
dongdaxiang 已提交
724 725 726
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
727 728 729 730 731


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
732 733 734 735 736 737

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
H
hutuxian 已提交
738 739 740 741
    """

    def __init__(self):
        """
742 743
        Initialize FileInstantDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
744 745 746 747 748 749
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
750 751
        Local shuffle
        FileInstantDataset does not support local shuffle
H
hutuxian 已提交
752 753 754 755 756 757 758 759
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
760
        FileInstantDataset does not support global shuffle
H
hutuxian 已提交
761 762 763 764
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("BoxPSDataset")
    """

    def __init__(self):
        """
780 781
        Initialize BoxPSDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
782 783 784 785 786 787
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)

    def begin_pass(self):
        """
788 789
        Begin Pass
        Notify BoxPS to begin next pass
H
hutuxian 已提交
790 791 792 793 794
	"""
        self.boxps.begin_pass()

    def end_pass(self):
        """
795 796
        End Pass
        Notify BoxPS to end current pass
H
hutuxian 已提交
797 798 799 800 801
	"""
        self.boxps.end_pass()

    def wait_preload_done(self):
        """
802 803
        Wait async proload done
        Wait Until Feed Pass Done
H
hutuxian 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
	"""
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
	Load next pass into memory and notify boxps to fetch its emb from SSD
	"""
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
	begin async preload next pass while current pass may be training
	"""
        self._prepare_to_run()
        self.boxps.preload_into_memory()