math_op_patch.py 17.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import warnings
18 19
import inspect

20
from .. import core
21
from ..framework import Variable, unique_name, static_only
22
from .layer_function_generator import OpProtoHolder
23
from .control_flow import array_write, array_length
24
from paddle.fluid.dygraph.base import in_declarative_mode
Y
Yang Yu 已提交
25

26
_supported_int_dtype_ = [
27
    core.VarDesc.VarType.BOOL,
28 29 30 31 32 33 34
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

35 36
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

37 38 39 40 41 42 43
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
44
    "__div__": "A / B",
45
    "__truediv__": "A / B",
46
    "__rdiv__": "A /= B",
47 48 49 50 51
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
52
    "__matmul__": "A @ B",
53 54 55 56 57 58 59 60
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

61 62
_already_patch_variable = False

Y
Yang Yu 已提交
63 64

def monkey_patch_variable():
65

Y
Yang Yu 已提交
66
    def unique_tmp_name():
Y
Yu Yang 已提交
67
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
68 69 70 71 72 73 74 75

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

76
    def current_block(var):
77
        return var.block.program.current_block()
78 79 80 81 82

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
83 84
    def create_tensor(block, value, dtype, shape):
        value = float(value)
85
        var = create_new_tmp_var(block, dtype)
86 87 88 89 90 91 92 93 94
        block.append_op(type="fill_constant",
                        outputs={'Out': [var]},
                        attrs={
                            'dtype': var.dtype,
                            'shape': shape,
                            'value': value,
                            'force_cpu': False
                        },
                        stop_gradient=True)
H
Hongyu Liu 已提交
95
        var.stop_gradient = True
Y
Yang Yu 已提交
96 97
        return var

Y
Yang Yu 已提交
98 99 100
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
101 102 103
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
104 105
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
106
        batch_dim = -1
107
        out_shape = []
108 109
        for i, d in enumerate(ref_var.shape):
            if d < 0:
110 111 112 113 114 115 116
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
117
        assert batch_dim != -1
118 119 120 121 122 123 124 125 126 127
        block.append_op(type='fill_constant_batch_size_like',
                        outputs={'Out': [var]},
                        inputs={'Input': [ref_var]},
                        attrs={
                            'shape': out_shape,
                            'value': value,
                            'input_dim_idx': batch_dim,
                            'output_dim_idx': batch_dim
                        },
                        stop_gradient=True)
H
Hongyu Liu 已提交
128 129

        var.stop_gradient = True
Y
Yang Yu 已提交
130 131
        return var

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    @static_only
    def cpu(self):
        """ 
            Variable should not have cpu() and cuda() interface.
            But this interface can greatly facilitate dy2static.
            We do nothing here.
        """
        return self

    @static_only
    def cuda(self):
        """ 
            Variable should not have cpu() and cuda() interface.
            But this interface can greatly facilitate dy2static.
            We do nothing here.
        """
        return self

Y
Yang Yu 已提交
150 151
    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
152 153 154
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
155
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
156

Y
Yang Yu 已提交
157
        Args:
J
Jiabin Yang 已提交
158

Y
Yang Yu 已提交
159
            self(Variable): The source variable
J
Jiabin Yang 已提交
160 161

            dtype: The target data type
Y
Yang Yu 已提交
162 163

        Returns:
J
Jiabin Yang 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
194
        """
195 196
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
197 198 199 200 201 202 203
        block.append_op(type="cast",
                        inputs={"X": [self]},
                        outputs={"Out": [out]},
                        attrs={
                            "in_dtype": self.dtype,
                            "out_dtype": out.dtype
                        })
204
        out.stop_gradient = self.stop_gradient
Y
Yang Yu 已提交
205 206
        return out

207 208 209 210 211 212 213 214
    @static_only
    def append(self, var):
        """
         **Notes**:
            **The type variable must be LoD Tensor Array.
        
        """
        if not isinstance(var, Variable):
215 216 217 218 219 220 221 222 223
            if in_declarative_mode():
                """ in dy2static mode, x may be tensorable values such as int, float, np.array
                """
                from paddle.tensor.creation import to_tensor
                var = to_tensor(var)
            else:
                raise TypeError(
                    "Required input var should be Variable, but received {}".
                    format(type(var)))
224 225
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
226 227
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}"
                .format(self.type))
228 229
        array_write(x=var, i=array_length(self), array=self)

230 231 232 233 234 235 236 237 238 239 240 241 242 243
    @static_only
    def pop(self, *args):
        """
         **Notes**:
            **The type variable must be LoD Tensor Array.
        
        """
        from paddle.fluid.dygraph.dygraph_to_static.convert_operators import _run_paddle_pop
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}"
                .format(self.type))
        return _run_paddle_pop(self, *args)

244
    def _scalar_op_(var, scale, bias):
245 246
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
247 248 249 250 251 252 253
        block.append_op(type="scale",
                        inputs={"X": [var]},
                        outputs={"Out": [out]},
                        attrs={
                            "scale": scale,
                            "bias": bias
                        })
254 255
        return out

256
    def _neg_(var):
257
        return _scalar_op_(var, -1.0, 0.0)
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    @property
    def _ndim_(self):
        """
        Returns the dimension of current Variable

        Returns:
            the dimension

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # print the dimension of the Variable
                print(x.ndim)
        """
        return len(self.shape)

281 282
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
283

284 285
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
286

287 288
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
289

290 291
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
292

293 294 295
    def _scalar_div_(var, value):
        return _scalar_op_(var, 1.0 / value, 0.0)

296 297 298 299
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
300

Y
Yang Yu 已提交
301
        def __impl__(self, other_var):
302 303 304 305 306 307 308 309 310
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
311
                    return scalar_method(self, other_var)
312 313 314 315 316 317
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
318 319 320
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
321 322 323 324 325
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
326
                # but only +, -, *, / can use this method
327 328 329 330 331
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
332

333
            # 2. create variable for scalar
Y
Yang Yu 已提交
334 335 336 337 338 339 340 341 342
            lhs_dtype = safe_get_dtype(self)
            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
343 344 345 346
                        other_var = create_tensor(current_block(self),
                                                  other_var,
                                                  dtype=lhs_dtype,
                                                  shape=self.shape)
Y
Yang Yu 已提交
347 348 349 350
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
351
                    # add fill_op to current_block
352 353 354
                    other_var = create_scalar(current_block(self),
                                              value=other_var,
                                              dtype=lhs_dtype)
Y
Yang Yu 已提交
355

356
            # 3. unify right var type to left var
Y
Yang Yu 已提交
357 358 359 360 361 362 363 364
            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

365 366 367 368 369 370
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

371 372
            axis = -1
            if other_var.shape[0] == -1:
373 374 375
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
376
                warnings.warn(
377 378 379 380 381
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
                       op_type, op_type, EXPRESSION_MAP[method_name]))
382 383 384 385 386 387 388
            current_block(self).append_op(type=op_type,
                                          inputs={
                                              'X': [self],
                                              'Y': [other_var]
                                          },
                                          outputs={'Out': out},
                                          attrs={'axis': axis})
Y
Yang Yu 已提交
389 390 391 392 393 394 395 396
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
397
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
398 399 400 401 402 403 404

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

405 406 407 408
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
409 410
        ('cpu', cpu),
        ('cuda', cuda),
411
        ('append', append),
412
        ('pop', pop),
413 414 415
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
416 417
        ('__add__',
         _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
418 419 420
        #  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
421 422 423 424 425 426
        ('__sub__',
         _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_)),
        ('__rsub__',
         _binary_creator_('__rsub__', 'elementwise_sub', True, _scalar_rsub_)),
        ('__mul__',
         _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_)),
427 428 429
        #  a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
430 431 432 433 434
        ('__div__',
         _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_)),
        ('__truediv__',
         _binary_creator_('__truediv__', 'elementwise_div', False,
                          _scalar_div_)),
435 436
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
437 438
        ('__rtruediv__',
         _binary_creator_('__rtruediv__', 'elementwise_div', True, None)),
439 440 441 442
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
443 444
        ('__floordiv__',
         _binary_creator_('__floordiv__', 'elementwise_floordiv', False, None)),
S
ShenLiang 已提交
445 446
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
447 448
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None))
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
466
        for method_name in paddle.tensor.tensor_method_func:
467 468 469 470
            if hasattr(Variable, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(Variable, method_name, method_impl)

471 472 473 474
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
            if impl: setattr(Variable, magic_method, impl)

475
    _already_patch_variable = True