Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ecc05377
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ecc05377
编写于
6月 16, 2021
作者:
Z
Zhou Wei
提交者:
GitHub
6月 16, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add bitwise_and/or/xor/not OP/API and unittest (#33524)
上级
a50d1296
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
999 addition
and
10 deletion
+999
-10
cmake/operators.cmake
cmake/operators.cmake
+1
-1
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+2
-2
paddle/fluid/operators/controlflow/CMakeLists.txt
paddle/fluid/operators/controlflow/CMakeLists.txt
+3
-1
paddle/fluid/operators/controlflow/bitwise_op.cc
paddle/fluid/operators/controlflow/bitwise_op.cc
+174
-0
paddle/fluid/operators/controlflow/bitwise_op.cu
paddle/fluid/operators/controlflow/bitwise_op.cu
+87
-0
paddle/fluid/operators/controlflow/bitwise_op.h
paddle/fluid/operators/controlflow/bitwise_op.h
+112
-0
paddle/fluid/operators/controlflow/unity_build_rule.cmake
paddle/fluid/operators/controlflow/unity_build_rule.cmake
+2
-0
paddle/scripts/paddle_build.bat
paddle/scripts/paddle_build.bat
+1
-1
python/paddle/__init__.py
python/paddle/__init__.py
+8
-0
python/paddle/fluid/dygraph/math_op_patch.py
python/paddle/fluid/dygraph/math_op_patch.py
+5
-2
python/paddle/fluid/layers/math_op_patch.py
python/paddle/fluid/layers/math_op_patch.py
+5
-2
python/paddle/fluid/tests/unittests/test_bitwise_op.py
python/paddle/fluid/tests/unittests/test_bitwise_op.py
+354
-0
python/paddle/fluid/tests/unittests/test_math_op_patch.py
python/paddle/fluid/tests/unittests/test_math_op_patch.py
+66
-0
python/paddle/fluid/tests/unittests/test_math_op_patch_var_base.py
...ddle/fluid/tests/unittests/test_math_op_patch_var_base.py
+25
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+16
-0
python/paddle/tensor/logic.py
python/paddle/tensor/logic.py
+138
-1
未找到文件。
cmake/operators.cmake
浏览文件 @
ecc05377
...
...
@@ -208,7 +208,7 @@ function(op_library TARGET)
endif
()
# Define operators that don't need pybind here.
foreach
(
manual_pybind_op
"compare_all_op"
"compare_op"
"logical_op"
"nccl_op"
foreach
(
manual_pybind_op
"compare_all_op"
"compare_op"
"logical_op"
"
bitwise_op"
"
nccl_op"
"tensor_array_read_write_op"
"tensorrt_engine_op"
"conv_fusion_op"
"fusion_transpose_flatten_concat_op"
"fusion_conv_inception_op"
"sync_batch_norm_op"
"dgc_op"
"fused_fc_elementwise_layernorm_op"
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
ecc05377
...
...
@@ -7,8 +7,6 @@ set(pybind_file ${PADDLE_BINARY_DIR}/paddle/fluid/pybind/pybind.h.tmp CACHE INTE
set
(
pybind_file_final
${
PADDLE_BINARY_DIR
}
/paddle/fluid/pybind/pybind.h
)
file
(
WRITE
${
pybind_file
}
"// Generated by the paddle/fluid/operators/CMakeLists.txt. DO NOT EDIT!
\n\n
"
)
copy_if_different
(
${
pybind_file
}
${
pybind_file_final
}
)
add_subdirectory
(
math
)
add_subdirectory
(
eigen
)
add_subdirectory
(
controlflow
)
...
...
@@ -203,3 +201,5 @@ endif()
if
(
WITH_GPU OR WITH_ASCEND_CL
)
cc_test
(
copy_cross_scope_test SRCS copy_cross_scope_test.cc DEPS op_registry copy_cross_scope_op scope device_context enforce executor
)
endif
()
copy_if_different
(
${
pybind_file
}
${
pybind_file_final
}
)
paddle/fluid/operators/controlflow/CMakeLists.txt
浏览文件 @
ecc05377
...
...
@@ -19,4 +19,6 @@ else()
target_link_libraries
(
conditional_block_infer_op conditional_block_op
)
endif
()
file
(
APPEND
${
pybind_file
}
"USE_OP(less_than);
\n
USE_OP(equal_all);
\n
USE_OP(logical_and);
\n
USE_NO_KERNEL_OP(read_from_array);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP(less_than);
\n
USE_OP(equal_all);
\n
USE_NO_KERNEL_OP(read_from_array);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP(logical_and);
\n
USE_OP(logical_or);
\n
USE_OP(logical_xor);
\n
USE_OP(logical_not);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP(bitwise_and);
\n
USE_OP(bitwise_or);
\n
USE_OP(bitwise_xor);
\n
USE_OP(bitwise_not);
\n
"
)
paddle/fluid/operators/controlflow/bitwise_op.cc
0 → 100644
浏览文件 @
ecc05377
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/controlflow/bitwise_op.h"
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
OpComment
>
class
BinaryBitwiseOpProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
OpComment
comment
;
AddInput
(
"X"
,
string
::
Sprintf
(
"Input Tensor of ``%s`` . It is "
"a N-D Tensor of bool, uint8, int8, int16, int32, int64."
,
comment
.
type
));
AddInput
(
"Y"
,
string
::
Sprintf
(
"Input Tensor of ``%s`` . It is "
"a N-D Tensor of bool, uint8, int8, int16, int32, int64."
,
comment
.
type
));
AddOutput
(
"Out"
,
string
::
Sprintf
(
"Result of ``%s`` . It is a N-D Tensor with "
"the same data type of input Tensor."
,
comment
.
type
));
AddComment
(
string
::
Sprintf
(
R"DOC(
It operates ``%s`` on Tensor ``X`` and ``Y`` .
.. math::
%s
.. note::
``paddle.%s`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
)DOC"
,
comment
.
type
,
comment
.
equation
,
comment
.
type
));
}
};
template
<
typename
OpComment
>
class
UnaryBitwiseOpProtoMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
OpComment
comment
;
AddInput
(
"X"
,
string
::
Sprintf
(
"Input Tensor of ``%s`` . It is "
"a N-D Tensor of bool, uint8, int8, int16, int32, int64."
,
comment
.
type
));
AddOutput
(
"Out"
,
string
::
Sprintf
(
"Result of ``%s`` . It is a N-D Tensor with "
"the same data type of input Tensor."
,
comment
.
type
));
AddComment
(
string
::
Sprintf
(
R"DOC(
It operates ``%s`` on Tensor ``X`` .
.. math::
%s
)DOC"
,
comment
.
type
,
comment
.
equation
));
}
};
class
BitwiseOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
OpKernelType
kt
=
OperatorWithKernel
::
GetExpectedKernelType
(
ctx
);
// BitwiseOp kernel's device type is decided by input tensor place
kt
.
place_
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
place
();
return
kt
;
}
};
template
<
typename
OpComment
>
class
UnaryBitwiseOp
:
public
BitwiseOp
{
public:
using
BitwiseOp
::
BitwiseOp
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
OpComment
comment
;
OP_INOUT_CHECK
(
context
->
HasInput
(
"X"
),
"Input"
,
"X"
,
comment
.
type
);
context
->
SetOutputDim
(
"Out"
,
context
->
GetInputDim
(
"X"
));
context
->
ShareLoD
(
"X"
,
"Out"
);
}
};
template
<
typename
OpComment
>
class
BinaryBitwiseOp
:
public
BitwiseOp
{
public:
using
BitwiseOp
::
BitwiseOp
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
OpComment
comment
;
OP_INOUT_CHECK
(
context
->
HasInput
(
"X"
),
"Input"
,
"X"
,
comment
.
type
);
OP_INOUT_CHECK
(
context
->
HasInput
(
"Y"
),
"Input"
,
"Y"
,
comment
.
type
);
auto
dim_x
=
context
->
GetInputDim
(
"X"
);
auto
dim_y
=
context
->
GetInputDim
(
"Y"
);
if
(
dim_x
==
dim_y
)
{
context
->
SetOutputDim
(
"Out"
,
dim_x
);
}
else
{
int
max_dim
=
std
::
max
(
dim_x
.
size
(),
dim_y
.
size
());
int
axis
=
std
::
abs
(
dim_x
.
size
()
-
dim_y
.
size
());
std
::
vector
<
int
>
x_dims_array
(
max_dim
);
std
::
vector
<
int
>
y_dims_array
(
max_dim
);
std
::
vector
<
int
>
out_dims_array
(
max_dim
);
GetBroadcastDimsArrays
(
dim_x
,
dim_y
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
context
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
out_dims_array
));
}
context
->
ShareLoD
(
"X"
,
"Out"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
::
paddle
::
operators
;
#define REGISTER_BINARY_BITWISE_OP(op_type, _equation) \
struct _##op_type##Comment { \
static char type[]; \
static char equation[]; \
}; \
char _##op_type##Comment::type[]{#op_type}; \
char _##op_type##Comment::equation[]{_equation}; \
REGISTER_OPERATOR( \
op_type, ops::BinaryBitwiseOp<_##op_type##Comment>, \
ops::BinaryBitwiseOpProtoMaker<_##op_type##Comment>, \
::paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>, \
::paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
#define REGISTER_UNARY_BITWISE_OP(op_type, _equation) \
struct _##op_type##Comment { \
static char type[]; \
static char equation[]; \
}; \
char _##op_type##Comment::type[]{#op_type}; \
char _##op_type##Comment::equation[]{_equation}; \
REGISTER_OPERATOR( \
op_type, ops::UnaryBitwiseOp<_##op_type##Comment>, \
ops::UnaryBitwiseOpProtoMaker<_##op_type##Comment>, \
::paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>, \
::paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_BINARY_BITWISE_OP
(
bitwise_and
,
"Out = X
\\
& Y"
);
REGISTER_BINARY_BITWISE_OP
(
bitwise_or
,
"Out = X | Y"
);
REGISTER_BINARY_BITWISE_OP
(
bitwise_xor
,
"Out = X ^
\\
wedge Y"
);
REGISTER_UNARY_BITWISE_OP
(
bitwise_not
,
"Out =
\\
sim X"
);
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_and
,
CPU
,
ops
::
BitwiseAndFunctor
);
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_or
,
CPU
,
ops
::
BitwiseOrFunctor
);
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_xor
,
CPU
,
ops
::
BitwiseXorFunctor
);
REGISTER_UNARY_BITWISE_KERNEL
(
bitwise_not
,
CPU
,
ops
::
BitwiseNotFunctor
);
paddle/fluid/operators/controlflow/bitwise_op.cu
0 → 100644
浏览文件 @
ecc05377
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/controlflow/bitwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
namespace
paddle
{
namespace
operators
{
#define BITWISE_BINARY_FUNCTOR(func, expr, bool_expr) \
template <typename T> \
struct Bitwise##func##CUDAFunctor { \
using ELEM_TYPE = T; \
HOSTDEVICE T operator()(const T* args) const { \
return args[0] expr args[1]; \
} \
}; \
\
template <> \
struct Bitwise##func##CUDAFunctor<bool> { \
using ELEM_TYPE = bool; \
HOSTDEVICE bool operator()(const bool* args) const { \
return args[0] bool_expr args[1]; \
} \
};
BITWISE_BINARY_FUNCTOR
(
And
,
&
,
&&
)
BITWISE_BINARY_FUNCTOR
(
Or
,
|
,
||
)
BITWISE_BINARY_FUNCTOR
(
Xor
,
^
,
!=
)
#undef BITWISE_BINARY_FUNCTOR
template
<
typename
T
>
struct
BitwiseNotCUDAFunctor
{
using
ELEM_TYPE
=
T
;
HOSTDEVICE
T
operator
()(
const
T
*
args
)
const
{
return
~
args
[
0
];
}
};
template
<
>
struct
BitwiseNotCUDAFunctor
<
bool
>
{
using
ELEM_TYPE
=
bool
;
HOSTDEVICE
bool
operator
()(
const
bool
*
args
)
const
{
return
!
args
[
0
];
}
};
template
<
typename
Functor
>
class
BinaryBitwiseOpKernel
<
platform
::
CUDADeviceContext
,
Functor
>
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEM_TYPE
>
{
public:
using
T
=
typename
Functor
::
ELEM_TYPE
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
functor
=
Functor
();
std
::
vector
<
const
framework
::
Tensor
*>
ins
;
std
::
vector
<
framework
::
Tensor
*>
outs
;
const
auto
&
cuda_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
int
axis
=
PackTensorsIntoVector
<
T
>
(
ctx
,
&
ins
,
&
outs
);
if
(
ins
.
size
()
==
1
)
{
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
T
>
(
cuda_ctx
,
ins
,
&
outs
,
axis
,
functor
);
}
else
{
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
cuda_ctx
,
ins
,
&
outs
,
axis
,
functor
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
::
paddle
::
operators
;
namespace
plat
=
::
paddle
::
platform
;
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_and
,
CUDA
,
ops
::
BitwiseAndCUDAFunctor
);
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_or
,
CUDA
,
ops
::
BitwiseOrCUDAFunctor
);
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_xor
,
CUDA
,
ops
::
BitwiseXorCUDAFunctor
);
REGISTER_BINARY_BITWISE_KERNEL
(
bitwise_not
,
CUDA
,
ops
::
BitwiseNotCUDAFunctor
);
paddle/fluid/operators/controlflow/bitwise_op.h
0 → 100644
浏览文件 @
ecc05377
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <math.h>
#include <type_traits>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/platform/transform.h"
namespace
paddle
{
namespace
operators
{
#define BITWISE_BINARY_FUNCTOR(func, expr, bool_expr) \
template <typename T> \
struct Bitwise##func##Functor { \
using ELEM_TYPE = T; \
HOSTDEVICE T operator()(const T& a, const T& b) const { return a expr b; } \
}; \
\
template <> \
struct Bitwise##func##Functor<bool> { \
using ELEM_TYPE = bool; \
HOSTDEVICE bool operator()(const bool& a, const bool& b) const { \
return a bool_expr b; \
} \
};
BITWISE_BINARY_FUNCTOR
(
And
,
&
,
&&
)
BITWISE_BINARY_FUNCTOR
(
Or
,
|
,
||
)
BITWISE_BINARY_FUNCTOR
(
Xor
,
^
,
!=
)
#undef BITWISE_BINARY_FUNCTOR
template
<
typename
T
>
struct
BitwiseNotFunctor
{
using
ELEM_TYPE
=
T
;
HOSTDEVICE
T
operator
()(
const
T
&
a
)
const
{
return
~
a
;
}
};
template
<
>
struct
BitwiseNotFunctor
<
bool
>
{
using
ELEM_TYPE
=
bool
;
HOSTDEVICE
bool
operator
()(
const
bool
&
a
)
const
{
return
!
a
;
}
};
template
<
typename
DeviceContext
,
typename
Functor
>
class
BinaryBitwiseOpKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEM_TYPE
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
using
T
=
typename
Functor
::
ELEM_TYPE
;
auto
func
=
Functor
();
auto
*
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
ElementwiseComputeEx
<
Functor
,
DeviceContext
,
T
>
(
context
,
x
,
y
,
-
1
,
func
,
out
);
}
};
template
<
typename
DeviceContext
,
typename
Functor
>
class
UnaryBitwiseOpKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEM_TYPE
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
using
T
=
typename
Functor
::
ELEM_TYPE
;
auto
func
=
Functor
();
auto
*
x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
platform
::
Transform
<
DeviceContext
>
trans
;
trans
(
context
.
template
device_context
<
DeviceContext
>(),
x
->
data
<
T
>
(),
x
->
data
<
T
>
()
+
x
->
numel
(),
out
->
mutable_data
<
T
>
(
context
.
GetPlace
()),
func
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
::
paddle
::
operators
;
namespace
plat
=
::
paddle
::
platform
;
#define REGISTER_BINARY_BITWISE_KERNEL(op_type, dev, functor) \
REGISTER_OP_##dev##_KERNEL( \
op_type, \
ops::BinaryBitwiseOpKernel<plat::dev##DeviceContext, functor<bool>>, \
ops::BinaryBitwiseOpKernel<plat::dev##DeviceContext, functor<uint8_t>>, \
ops::BinaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int8_t>>, \
ops::BinaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int16_t>>, \
ops::BinaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int>>, \
ops::BinaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int64_t>>);
#define REGISTER_UNARY_BITWISE_KERNEL(op_type, dev, functor) \
REGISTER_OP_##dev##_KERNEL( \
op_type, \
ops::UnaryBitwiseOpKernel<plat::dev##DeviceContext, functor<bool>>, \
ops::UnaryBitwiseOpKernel<plat::dev##DeviceContext, functor<uint8_t>>, \
ops::UnaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int8_t>>, \
ops::UnaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int16_t>>, \
ops::UnaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int>>, \
ops::UnaryBitwiseOpKernel<plat::dev##DeviceContext, functor<int64_t>>);
paddle/fluid/operators/controlflow/unity_build_rule.cmake
浏览文件 @
ecc05377
...
...
@@ -12,9 +12,11 @@ register_unity_group(cc
fetch_op.cc
get_places_op.cc
logical_op.cc
bitwise_op.cc
tensor_array_read_write_op.cc
while_op.cc
)
register_unity_group
(
cu
logical_op.cu
bitwise_op.cu
compare_op.cu
compare_all_op.cu
)
paddle/scripts/paddle_build.bat
浏览文件 @
ecc05377
...
...
@@ -78,7 +78,7 @@ if not defined PYTHON_ROOT set PYTHON_ROOT=C:\Python37
rem -------set cache build directory-----------
rmdir
build
\python
/s/q
rmdir
build
\paddle\third_party\externalError
/s/q
rmdir
build
\paddle\fluid\pybind
/s/q
r
em r
mdir build\paddle\fluid\pybind /s/q
rmdir
build
\paddle_install_dir
/s/q
rmdir
build
\paddle_inference_install_dir
/s/q
rmdir
build
\paddle_inference_c_install_dir
/s/q
...
...
python/paddle/__init__.py
浏览文件 @
ecc05377
...
...
@@ -108,6 +108,10 @@ from .tensor.logic import logical_and # noqa: F401
from
.tensor.logic
import
logical_not
# noqa: F401
from
.tensor.logic
import
logical_or
# noqa: F401
from
.tensor.logic
import
logical_xor
# noqa: F401
from
.tensor.logic
import
bitwise_and
# noqa: F401
from
.tensor.logic
import
bitwise_not
# noqa: F401
from
.tensor.logic
import
bitwise_or
# noqa: F401
from
.tensor.logic
import
bitwise_xor
# noqa: F401
from
.tensor.logic
import
not_equal
# noqa: F401
from
.tensor.logic
import
allclose
# noqa: F401
from
.tensor.logic
import
equal_all
# noqa: F401
...
...
@@ -371,6 +375,10 @@ __all__ = [ # noqa
'max'
,
'norm'
,
'logical_or'
,
'bitwise_and'
,
'bitwise_or'
,
'bitwise_xor'
,
'bitwise_not'
,
'mm'
,
'flip'
,
'histogram'
,
...
...
python/paddle/fluid/dygraph/math_op_patch.py
浏览文件 @
ecc05377
...
...
@@ -319,10 +319,13 @@ def monkey_patch_math_varbase():
else
:
import
paddle.tensor
# Tensor method from module paddle.tensor
tensor_methods
=
paddle
.
tensor
.
tensor_method_func
for
method_name
in
tensor_methods
:
for
method_name
in
paddle
.
tensor
.
tensor_method_func
:
if
hasattr
(
core
.
VarBase
,
method_name
):
continue
method_impl
=
getattr
(
paddle
.
tensor
,
method_name
,
None
)
if
method_impl
:
setattr
(
core
.
VarBase
,
method_name
,
method_impl
)
for
magic_method
,
origin_method
in
paddle
.
tensor
.
magic_method_func
:
impl
=
getattr
(
paddle
.
tensor
,
origin_method
,
None
)
if
impl
:
setattr
(
core
.
VarBase
,
magic_method
,
impl
)
_already_patch_varbase
=
True
python/paddle/fluid/layers/math_op_patch.py
浏览文件 @
ecc05377
...
...
@@ -364,10 +364,13 @@ def monkey_patch_variable():
setattr
(
Variable
,
method_name
,
method_impl
)
else
:
import
paddle.tensor
variabel_methods
=
paddle
.
tensor
.
tensor_method_func
for
method_name
in
variabel_methods
:
for
method_name
in
paddle
.
tensor
.
tensor_method_func
:
if
hasattr
(
Variable
,
method_name
):
continue
method_impl
=
getattr
(
paddle
.
tensor
,
method_name
,
None
)
if
method_impl
:
setattr
(
Variable
,
method_name
,
method_impl
)
for
magic_method
,
origin_method
in
paddle
.
tensor
.
magic_method_func
:
impl
=
getattr
(
paddle
.
tensor
,
origin_method
,
None
)
if
impl
:
setattr
(
Variable
,
magic_method
,
impl
)
_already_patch_variable
=
True
python/paddle/fluid/tests/unittests/test_bitwise_op.py
0 → 100644
浏览文件 @
ecc05377
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
from
op_test
import
OpTest
paddle
.
enable_static
()
################## TEST OP: BitwiseAnd ##################
class
TestBitwiseAnd
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"bitwise_and"
self
.
init_dtype
()
self
.
init_shape
()
self
.
init_bound
()
x
=
np
.
random
.
randint
(
self
.
low
,
self
.
high
,
self
.
x_shape
,
dtype
=
self
.
dtype
)
y
=
np
.
random
.
randint
(
self
.
low
,
self
.
high
,
self
.
y_shape
,
dtype
=
self
.
dtype
)
out
=
np
.
bitwise_and
(
x
,
y
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
pass
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int32
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
5
]
self
.
y_shape
=
[
2
,
3
,
4
,
5
]
def
init_bound
(
self
):
self
.
low
=
-
100
self
.
high
=
100
class
TestBitwiseAndUInt8
(
TestBitwiseAnd
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
uint8
def
init_bound
(
self
):
self
.
low
=
0
self
.
high
=
100
class
TestBitwiseAndInt8
(
TestBitwiseAnd
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int8
def
init_shape
(
self
):
self
.
x_shape
=
[
4
,
5
]
self
.
y_shape
=
[
2
,
3
,
4
,
5
]
class
TestBitwiseAndInt16
(
TestBitwiseAnd
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int16
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
5
]
self
.
y_shape
=
[
4
,
1
]
class
TestBitwiseAndInt64
(
TestBitwiseAnd
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int64
def
init_shape
(
self
):
self
.
x_shape
=
[
1
,
4
,
1
]
self
.
y_shape
=
[
2
,
3
,
4
,
5
]
class
TestBitwiseAndBool
(
TestBitwiseAnd
):
def
setUp
(
self
):
self
.
op_type
=
"bitwise_and"
self
.
init_shape
()
x
=
np
.
random
.
choice
([
True
,
False
],
self
.
x_shape
)
y
=
np
.
random
.
choice
([
True
,
False
],
self
.
y_shape
)
out
=
np
.
bitwise_and
(
x
,
y
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
out
}
################## TEST OP: BitwiseOr ##################
class
TestBitwiseOr
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"bitwise_or"
self
.
init_dtype
()
self
.
init_shape
()
self
.
init_bound
()
x
=
np
.
random
.
randint
(
self
.
low
,
self
.
high
,
self
.
x_shape
,
dtype
=
self
.
dtype
)
y
=
np
.
random
.
randint
(
self
.
low
,
self
.
high
,
self
.
y_shape
,
dtype
=
self
.
dtype
)
out
=
np
.
bitwise_or
(
x
,
y
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
pass
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int32
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
5
]
self
.
y_shape
=
[
2
,
3
,
4
,
5
]
def
init_bound
(
self
):
self
.
low
=
-
100
self
.
high
=
100
class
TestBitwiseOrUInt8
(
TestBitwiseOr
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
uint8
def
init_bound
(
self
):
self
.
low
=
0
self
.
high
=
100
class
TestBitwiseOrInt8
(
TestBitwiseOr
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int8
def
init_shape
(
self
):
self
.
x_shape
=
[
4
,
5
]
self
.
y_shape
=
[
2
,
3
,
4
,
5
]
class
TestBitwiseOrInt16
(
TestBitwiseOr
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int16
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
5
]
self
.
y_shape
=
[
4
,
1
]
class
TestBitwiseOrInt64
(
TestBitwiseOr
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int64
def
init_shape
(
self
):
self
.
x_shape
=
[
1
,
4
,
1
]
self
.
y_shape
=
[
2
,
3
,
4
,
5
]
class
TestBitwiseOrBool
(
TestBitwiseOr
):
def
setUp
(
self
):
self
.
op_type
=
"bitwise_or"
self
.
init_shape
()
x
=
np
.
random
.
choice
([
True
,
False
],
self
.
x_shape
)
y
=
np
.
random
.
choice
([
True
,
False
],
self
.
y_shape
)
out
=
np
.
bitwise_or
(
x
,
y
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
out
}
################## TEST OP: BitwiseXor ##################
class
TestBitwiseXor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"bitwise_xor"
self
.
init_dtype
()
self
.
init_shape
()
self
.
init_bound
()
x
=
np
.
random
.
randint
(
self
.
low
,
self
.
high
,
self
.
x_shape
,
dtype
=
self
.
dtype
)
y
=
np
.
random
.
randint
(
self
.
low
,
self
.
high
,
self
.
y_shape
,
dtype
=
self
.
dtype
)
out
=
np
.
bitwise_xor
(
x
,
y
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
pass
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int32
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
5
]
self
.
y_shape
=
[
2
,
3
,
4
,
5
]
def
init_bound
(
self
):
self
.
low
=
-
100
self
.
high
=
100
class
TestBitwiseXorUInt8
(
TestBitwiseXor
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
uint8
def
init_bound
(
self
):
self
.
low
=
0
self
.
high
=
100
class
TestBitwiseXorInt8
(
TestBitwiseXor
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int8
def
init_shape
(
self
):
self
.
x_shape
=
[
4
,
5
]
self
.
y_shape
=
[
2
,
3
,
4
,
5
]
class
TestBitwiseXorInt16
(
TestBitwiseXor
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int16
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
5
]
self
.
y_shape
=
[
4
,
1
]
class
TestBitwiseXorInt64
(
TestBitwiseXor
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int64
def
init_shape
(
self
):
self
.
x_shape
=
[
1
,
4
,
1
]
self
.
y_shape
=
[
2
,
3
,
4
,
5
]
class
TestBitwiseXorBool
(
TestBitwiseXor
):
def
setUp
(
self
):
self
.
op_type
=
"bitwise_xor"
self
.
init_shape
()
x
=
np
.
random
.
choice
([
True
,
False
],
self
.
x_shape
)
y
=
np
.
random
.
choice
([
True
,
False
],
self
.
y_shape
)
out
=
np
.
bitwise_xor
(
x
,
y
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
out
}
################## TEST OP: BitwiseNot ##################
class
TestBitwiseNot
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"bitwise_not"
self
.
init_dtype
()
self
.
init_shape
()
self
.
init_bound
()
x
=
np
.
random
.
randint
(
self
.
low
,
self
.
high
,
self
.
x_shape
,
dtype
=
self
.
dtype
)
out
=
np
.
bitwise_not
(
x
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
pass
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int32
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
5
]
def
init_bound
(
self
):
self
.
low
=
-
100
self
.
high
=
100
class
TestBitwiseNotUInt8
(
TestBitwiseNot
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
uint8
def
init_bound
(
self
):
self
.
low
=
0
self
.
high
=
100
class
TestBitwiseNotInt8
(
TestBitwiseNot
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int8
def
init_shape
(
self
):
self
.
x_shape
=
[
4
,
5
]
class
TestBitwiseNotInt16
(
TestBitwiseNot
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int16
def
init_shape
(
self
):
self
.
x_shape
=
[
2
,
3
,
4
,
5
]
self
.
y_shape
=
[
4
,
1
]
class
TestBitwiseNotInt64
(
TestBitwiseNot
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int64
def
init_shape
(
self
):
self
.
x_shape
=
[
1
,
4
,
1
]
class
TestBitwiseNotBool
(
TestBitwiseNot
):
def
setUp
(
self
):
self
.
op_type
=
"bitwise_not"
self
.
init_shape
()
x
=
np
.
random
.
choice
([
True
,
False
],
self
.
x_shape
)
out
=
np
.
bitwise_not
(
x
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Out'
:
out
}
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_math_op_patch.py
浏览文件 @
ecc05377
...
...
@@ -19,6 +19,7 @@ from decorator_helper import prog_scope
import
paddle
import
paddle.fluid
as
fluid
import
numpy
import
numpy
as
np
class
TestMathOpPatches
(
unittest
.
TestCase
):
...
...
@@ -270,6 +271,71 @@ class TestMathOpPatches(unittest.TestCase):
fetch_list
=
[
b
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
.
astype
(
'float32'
),
b_np
))
@
prog_scope
()
def
test_bitwise_and
(
self
):
x_np
=
np
.
random
.
randint
(
-
100
,
100
,
[
2
,
3
,
5
]).
astype
(
"int32"
)
y_np
=
np
.
random
.
randint
(
-
100
,
100
,
[
2
,
3
,
5
]).
astype
(
"int32"
)
out_np
=
x_np
&
y_np
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
,
5
],
dtype
=
"int32"
)
y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
2
,
3
,
5
],
dtype
=
"int32"
)
z
=
x
&
y
exe
=
fluid
.
Executor
()
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
x_np
,
"y"
:
y_np
},
fetch_list
=
[
z
])
self
.
assertTrue
(
np
.
array_equal
(
out
[
0
],
out_np
))
@
prog_scope
()
def
test_bitwise_or
(
self
):
x_np
=
np
.
random
.
randint
(
-
100
,
100
,
[
2
,
3
,
5
]).
astype
(
"int32"
)
y_np
=
np
.
random
.
randint
(
-
100
,
100
,
[
2
,
3
,
5
]).
astype
(
"int32"
)
out_np
=
x_np
|
y_np
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
,
5
],
dtype
=
"int32"
)
y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
2
,
3
,
5
],
dtype
=
"int32"
)
z
=
x
|
y
exe
=
fluid
.
Executor
()
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
x_np
,
"y"
:
y_np
},
fetch_list
=
[
z
])
self
.
assertTrue
(
np
.
array_equal
(
out
[
0
],
out_np
))
@
prog_scope
()
def
test_bitwise_xor
(
self
):
x_np
=
np
.
random
.
randint
(
-
100
,
100
,
[
2
,
3
,
5
]).
astype
(
"int32"
)
y_np
=
np
.
random
.
randint
(
-
100
,
100
,
[
2
,
3
,
5
]).
astype
(
"int32"
)
out_np
=
x_np
^
y_np
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
,
5
],
dtype
=
"int32"
)
y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
2
,
3
,
5
],
dtype
=
"int32"
)
z
=
x
^
y
exe
=
fluid
.
Executor
()
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
x_np
,
"y"
:
y_np
},
fetch_list
=
[
z
])
self
.
assertTrue
(
np
.
array_equal
(
out
[
0
],
out_np
))
@
prog_scope
()
def
test_bitwise_not
(
self
):
x_np
=
np
.
random
.
randint
(
-
100
,
100
,
[
2
,
3
,
5
]).
astype
(
"int32"
)
out_np
=
~
x_np
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
2
,
3
,
5
],
dtype
=
"int32"
)
z
=
~
x
exe
=
fluid
.
Executor
()
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
x_np
},
fetch_list
=
[
z
])
self
.
assertTrue
(
np
.
array_equal
(
out
[
0
],
out_np
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_math_op_patch_var_base.py
浏览文件 @
ecc05377
...
...
@@ -141,6 +141,31 @@ class TestMathOpPatchesVarBase(unittest.TestCase):
res
=
a
%
b
self
.
assertTrue
(
np
.
array_equal
(
res
.
numpy
(),
a_np
%
b_np
))
# for bitwise and/or/xor/not
def
test_bitwise
(
self
):
paddle
.
disable_static
()
x_np
=
np
.
random
.
randint
(
-
100
,
100
,
[
2
,
3
,
5
])
y_np
=
np
.
random
.
randint
(
-
100
,
100
,
[
2
,
3
,
5
])
x
=
paddle
.
to_tensor
(
x_np
)
y
=
paddle
.
to_tensor
(
y_np
)
out_np
=
x_np
&
y_np
out
=
x
&
y
self
.
assertTrue
(
np
.
array_equal
(
out
.
numpy
(),
out_np
))
out_np
=
x_np
|
y_np
out
=
x
|
y
self
.
assertTrue
(
np
.
array_equal
(
out
.
numpy
(),
out_np
))
out_np
=
x_np
^
y_np
out
=
x
^
y
self
.
assertTrue
(
np
.
array_equal
(
out
.
numpy
(),
out_np
))
out_np
=
~
x_np
out
=
~
x
self
.
assertTrue
(
np
.
array_equal
(
out
.
numpy
(),
out_np
))
# for logical compare
def
test_equal
(
self
):
a_np
=
np
.
asarray
([
1
,
2
,
3
,
4
,
5
])
...
...
python/paddle/tensor/__init__.py
浏览文件 @
ecc05377
...
...
@@ -54,6 +54,10 @@ from .logic import logical_and # noqa: F401
from
.logic
import
logical_not
# noqa: F401
from
.logic
import
logical_or
# noqa: F401
from
.logic
import
logical_xor
# noqa: F401
from
.logic
import
bitwise_and
# noqa: F401
from
.logic
import
bitwise_or
# noqa: F401
from
.logic
import
bitwise_xor
# noqa: F401
from
.logic
import
bitwise_not
# noqa: F401
from
.logic
import
not_equal
# noqa: F401
from
.logic
import
allclose
# noqa: F401
from
.logic
import
equal_all
# noqa: F401
...
...
@@ -352,4 +356,16 @@ tensor_method_func = [ #noqa
'imag'
,
'trunc'
'digamma'
'bitwise_and'
,
'bitwise_or'
,
'bitwise_xor'
,
'bitwise_not'
,
]
#this list used in math_op_patch.py for magic_method bind
magic_method_func
=
[
(
'__and__'
,
'bitwise_and'
),
(
'__or__'
,
'bitwise_or'
),
(
'__xor__'
,
'bitwise_xor'
),
(
'__invert__'
,
'bitwise_not'
),
]
python/paddle/tensor/logic.py
浏览文件 @
ecc05377
...
...
@@ -16,7 +16,7 @@ from ..fluid.layer_helper import LayerHelper
from
..fluid.data_feeder
import
check_type
,
check_variable_and_dtype
from
..fluid.layers.layer_function_generator
import
templatedoc
from
..
import
fluid
from
..fluid.framework
import
in_dygraph_mode
from
..fluid.framework
import
in_dygraph_mode
,
Variable
from
..framework
import
VarBase
as
Tensor
# TODO: define logic functions of a tensor
...
...
@@ -437,3 +437,140 @@ def is_tensor(x):
"""
return
isinstance
(
x
,
Tensor
)
def
_bitwise_op
(
op_name
,
x
,
y
,
out
=
None
,
name
=
None
,
binary_op
=
True
):
if
in_dygraph_mode
():
op
=
getattr
(
core
.
ops
,
op_name
)
if
binary_op
:
return
op
(
x
,
y
)
else
:
return
op
(
x
)
check_variable_and_dtype
(
x
,
"x"
,
[
"bool"
,
"uint8"
,
"int8"
,
"int16"
,
"int32"
,
"int64"
],
op_name
)
if
y
is
not
None
:
check_variable_and_dtype
(
y
,
"y"
,
[
"bool"
,
"uint8"
,
"int8"
,
"int16"
,
"int32"
,
"int64"
],
op_name
)
if
out
is
not
None
:
check_type
(
out
,
"out"
,
Variable
,
op_name
)
helper
=
LayerHelper
(
op_name
,
**
locals
())
if
binary_op
:
assert
x
.
dtype
==
y
.
dtype
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
if
binary_op
:
helper
.
append_op
(
type
=
op_name
,
inputs
=
{
"X"
:
x
,
"Y"
:
y
},
outputs
=
{
"Out"
:
out
})
else
:
helper
.
append_op
(
type
=
op_name
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
@
templatedoc
()
def
bitwise_and
(
x
,
y
,
out
=
None
,
name
=
None
):
"""
${comment}
Args:
x (Tensor): ${x_comment}
y (Tensor): ${y_comment}
out(Tensor): ${out_comment}
Returns:
Tensor: ${out_comment}
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([-5, -1, 1])
y = paddle.to_tensor([4, 2, -3])
res = paddle.bitwise_and(x, y)
print(res) # [0, 2, 1]
"""
return
_bitwise_op
(
op_name
=
"bitwise_and"
,
x
=
x
,
y
=
y
,
name
=
name
,
out
=
out
,
binary_op
=
True
)
@
templatedoc
()
def
bitwise_or
(
x
,
y
,
out
=
None
,
name
=
None
):
"""
${comment}
Args:
x (Tensor): ${x_comment}
y (Tensor): ${y_comment}
out(Tensor): ${out_comment}
Returns:
Tensor: ${out_comment}
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([-5, -1, 1])
y = paddle.to_tensor([4, 2, -3])
res = paddle.bitwise_or(x, y)
print(res) # [-1, -1, -3]
"""
return
_bitwise_op
(
op_name
=
"bitwise_or"
,
x
=
x
,
y
=
y
,
name
=
name
,
out
=
out
,
binary_op
=
True
)
@
templatedoc
()
def
bitwise_xor
(
x
,
y
,
out
=
None
,
name
=
None
):
"""
${comment}
Args:
x (Tensor): ${x_comment}
y (Tensor): ${y_comment}
out(Tensor): ${out_comment}
Returns:
Tensor: ${out_comment}
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([-5, -1, 1])
y = paddle.to_tensor([4, 2, -3])
res = paddle.bitwise_xor(x, y)
print(res) # [-1, -3, -4]
"""
return
_bitwise_op
(
op_name
=
"bitwise_xor"
,
x
=
x
,
y
=
y
,
name
=
name
,
out
=
out
,
binary_op
=
True
)
@
templatedoc
()
def
bitwise_not
(
x
,
out
=
None
,
name
=
None
):
"""
${comment}
Args:
x(Tensor): ${x_comment}
out(Tensor): ${out_comment}
Returns:
Tensor: ${out_comment}
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([-5, -1, 1])
res = paddle.bitwise_not(x)
print(res) # [4, 0, -2]
"""
return
_bitwise_op
(
op_name
=
"bitwise_not"
,
x
=
x
,
y
=
None
,
name
=
name
,
out
=
out
,
binary_op
=
False
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录