math_op_patch.py 10.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from .. import core
18
from ..framework import Variable, unique_name
19
from .layer_function_generator import OpProtoHolder
Y
Yang Yu 已提交
20

21 22 23 24 25 26 27 28
_supported_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

29 30
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

Y
Yang Yu 已提交
31 32

def monkey_patch_variable():
Y
Yang Yu 已提交
33
    def unique_tmp_name():
Y
Yu Yang 已提交
34
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
35 36 37 38 39 40 41 42

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

43
    def current_block(var):
44
        return var.block.program.current_block()
45 46 47 48 49

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
50 51
    def create_tensor(block, value, dtype, shape):
        value = float(value)
52
        var = create_new_tmp_var(block, dtype)
Y
Yang Yu 已提交
53 54 55
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
56 57 58 59
            attrs={
                'dtype': var.dtype,
                'shape': shape,
                'value': value,
60
                'force_cpu': False
H
Hongyu Liu 已提交
61 62 63
            },
            stop_gradient=True)
        var.stop_gradient = True
Y
Yang Yu 已提交
64 65
        return var

Y
Yang Yu 已提交
66 67 68
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
69 70 71
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
72 73
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
74 75 76 77 78 79
        batch_dim = -1
        for i, d in enumerate(ref_var.shape):
            if d < 0:
                batch_dim = i
                break
        assert batch_dim != -1
80
        block.append_op(
Y
Yang Yu 已提交
81 82 83
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
84 85 86 87 88
            attrs={
                'shape': ref_var.shape,
                'value': value,
                'input_dim_idx': batch_dim,
                'output_dim_idx': batch_dim
H
Hongyu Liu 已提交
89 90 91 92
            },
            stop_gradient=True)

        var.stop_gradient = True
Y
Yang Yu 已提交
93 94 95 96
        return var

    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
97 98 99
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
100
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
101

Y
Yang Yu 已提交
102
        Args:
J
Jiabin Yang 已提交
103

Y
Yang Yu 已提交
104
            self(Variable): The source variable
J
Jiabin Yang 已提交
105 106

            dtype: The target data type
Y
Yang Yu 已提交
107 108

        Returns:
J
Jiabin Yang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
139
        """
140 141 142
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
        block.append_op(
Y
Yang Yu 已提交
143 144 145 146 147 148 149
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype,
                   "out_dtype": out.dtype})
        return out

150 151 152 153 154 155 156 157 158 159 160
    def _scalar_elementwise_op_(var, scale, bias):
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
        block.append_op(
            type="scale",
            inputs={"X": [var]},
            outputs={"Out": [out]},
            attrs={"scale": scale,
                   "bias": bias})
        return out

161 162 163
    def _neg_(var):
        return _scalar_elementwise_op_(var, -1.0, 0.0)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    def _scalar_elementwise_add_(var, value):
        return _scalar_elementwise_op_(var, 1.0, value)

    def _scalar_elementwise_sub_(var, value):
        return _scalar_elementwise_op_(var, 1.0, -value)

    def _scalar_elementwise_rsub_(var, value):
        return _scalar_elementwise_op_(var, -1.0, value)

    def _scalar_elementwise_mul_(var, value):
        return _scalar_elementwise_op_(var, value, 0.0)

    def _scalar_elementwise_div_(var, value):
        return _scalar_elementwise_op_(var, 1.0 / value, 0.0)

    def _elemwise_method_creator_(method_name,
                                  op_type,
                                  reverse=False,
                                  scalar_method=None):
Y
Yang Yu 已提交
183
        def __impl__(self, other_var):
184 185 186 187 188
            # FIXME(zjl): elementwise_div between integers cannot be converted to scale,
            # which may lose accuracy. This is a hot fix for release 1.6.
            if scalar_method is not None and not (
                    op_type == 'elementwise_div' and
                    self.dtype in _supported_int_dtype_):
189 190 191 192 193 194 195 196
                if isinstance(other_var, float):
                    if self.dtype in _supported_int_dtype_:
                        assert other_var == int(other_var), \
                            "float value {} cannot convert to integer".format(other_var)
                    return scalar_method(self, other_var)
                elif isinstance(other_var, int):
                    return scalar_method(self, float(other_var))

Y
Yang Yu 已提交
197 198 199 200 201 202 203 204 205 206 207
            lhs_dtype = safe_get_dtype(self)

            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
                        other_var = create_tensor(
208
                            current_block(self),
Y
Yang Yu 已提交
209 210 211 212 213 214 215
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape)
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
216
                    # add fill_op to current_block
Y
Yang Yu 已提交
217
                    other_var = create_scalar(
218
                        current_block(self), value=other_var, dtype=lhs_dtype)
Y
Yang Yu 已提交
219 220 221 222 223 224 225 226 227

            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

228 229 230 231 232 233
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

234 235 236
            axis = -1
            if other_var.shape[0] == -1:
                axis = 0
237
            current_block(self).append_op(
Y
Yang Yu 已提交
238 239 240
                type=op_type,
                inputs={'X': [self],
                        'Y': [other_var]},
241
                outputs={'Out': out},
242
                attrs={'axis': axis})
Y
Yang Yu 已提交
243 244 245 246 247 248 249 250
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
251
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
252 253 254 255 256 257 258 259

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

    # inject methods
260 261
    for method_name, op_type, reverse, scalar_method in (
        ("__add__", "elementwise_add", False, _scalar_elementwise_add_),
Y
Yang Yu 已提交
262
            # a+b == b+a. Do not need to reverse explicitly
263 264 265 266
        ("__radd__", "elementwise_add", False, _scalar_elementwise_add_),
        ("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_),
        ("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_),
        ("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_),
Y
Yang Yu 已提交
267
            # a*b == b*a. Do not need to reverse explicitly
268 269 270 271 272 273 274 275 276
        ("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_),
        ("__div__", "elementwise_div", False, _scalar_elementwise_div_),
        ("__truediv__", "elementwise_div", False, _scalar_elementwise_div_),
        ("__rdiv__", "elementwise_div", True, None),
        ("__rtruediv__", "elementwise_div", True, None),
        ("__pow__", "elementwise_pow", False, None),
        ("__rpow__", "elementwise_pow", True, None),
        ("__floordiv__", "elementwise_floordiv", False, None),
        ("__mod__", "elementwise_mod", False, None),
277
            # for logical compare
278 279 280 281 282 283
        ("__eq__", "equal", False, None),
        ("__ne__", "not_equal", False, None),
        ("__lt__", "less_than", False, None),
        ("__le__", "less_equal", False, None),
        ("__gt__", "greater_than", False, None),
        ("__ge__", "greater_equal", False, None)):
Y
Yang Yu 已提交
284
        setattr(Variable, method_name,
285 286
                _elemwise_method_creator_(method_name, op_type, reverse,
                                          scalar_method))
287

288 289
    # b = -a
    Variable.__neg__ = _neg_
Y
Yang Yu 已提交
290
    Variable.astype = astype