sparse_utils_kernel.cc 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
16

17 18 19
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
20
#include "paddle/phi/core/visit_type.h"
21
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
22

23
namespace phi {
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
namespace sparse {

template <typename T>
inline bool IsZero(const T* data, const size_t n) {
  const T zero = static_cast<T>(0);
  for (size_t i = 0; i < n; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

// TODO(zhangkaihuo): implement a kernel to count the number of non-zero
// elements in tensor
template <typename T>
inline int64_t GetNonZeroNum(const DenseTensor& dense,
                             const int64_t sparse_dim) {
  const auto& dims = dense.dims();
  PADDLE_ENFORCE_GE(
      dims.size(),
      sparse_dim,
46
      phi::errors::InvalidArgument(
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
          "sparse_dim(%d) should be less than or equal to dense.dim(%d)",
          sparse_dim,
          dims.size()));

  auto dims_2d = flatten_to_2d(dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  const T* data = dense.data<T>();
  int64_t non_zero_num = 0;
  for (int64_t i = 0; i < rows; i++) {
    if (!IsZero(data + i * cols, cols)) {
      non_zero_num = non_zero_num + 1;
    }
  }
  return non_zero_num;
}

template <typename T, typename Context>
66 67 68 69
void DenseToCooKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const int64_t sparse_dim,
                      SparseCooTensor* out) {
70 71
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();
72 73 74 75 76 77
  PADDLE_ENFORCE_LE(sparse_dim,
                    x_dims.size(),
                    phi::errors::InvalidArgument(
                        "sparse_dim must be less than the size of x.dims()"));
  PADDLE_ENFORCE_GT(
      sparse_dim, 0, phi::errors::InvalidArgument("sparse_dim must be >0"));
78 79 80

  int64_t non_zero_num = GetNonZeroNum<T>(x, sparse_dim);

81 82
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
83
  DenseTensorMeta values_meta(x.meta().dtype, values_dims, x.meta().layout);
84 85
  phi::DenseTensor indices =
      phi::Empty<int64_t>(dev_ctx, {sparse_dim, non_zero_num});
86
  phi::DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
87 88
  int64_t* indices_data = indices.data<int64_t>();
  T* values_data = values.data<T>();
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  int index = 0;
  for (int i = 0; i < rows; i++) {
    if (!IsZero(x_data + i * cols, cols)) {
      int64_t sparse_index = i;
      for (int64_t j = sparse_dim - 1; j >= 0; j--) {
        indices_data[j * non_zero_num + index] = sparse_index % x_dims[j];
        sparse_index /= x_dims[j];
      }
      memcpy(values_data + index * cols, x_data + i * cols, cols * sizeof(T));
      ++index;
    }
  }
  out->SetMember(indices, values, x_dims, true);
}

109
template <typename T, typename IntT>
110 111 112
void CsrToCooCPUKernel(const CPUContext& dev_ctx,
                       const SparseCsrTensor& x,
                       SparseCooTensor* out) {
113
  const DDim& x_dims = x.dims();
114 115 116 117
  const int64_t non_zero_num = x.cols().numel();
  const auto& csr_crows = x.crows();
  const auto& csr_cols = x.cols();
  const auto& csr_values = x.values();
118 119
  const IntT* csr_crows_data = csr_crows.data<IntT>();
  const IntT* csr_cols_data = csr_cols.data<IntT>();
120 121 122 123 124 125
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
126 127 128 129 130 131
  phi::DenseTensor indices =
      phi::Empty<IntT>(dev_ctx, {sparse_dim, non_zero_num});
  phi::DenseTensor values = phi::Empty<T>(dev_ctx, {non_zero_num});
  IntT* coo_indices = indices.data<IntT>();
  IntT* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  IntT* coo_rows_data =
132
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
133 134
  IntT* coo_cols_data = coo_rows_data + non_zero_num;
  T* coo_values_data = values.data<T>();
135 136 137 138 139 140 141

  int batch = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

  int index = 0;
  for (int b = 0; b < batch; b++) {
    for (int i = 0; i < rows; i++) {
142
      for (IntT j = csr_crows_data[b * (rows + 1) + i];
143 144 145 146 147 148 149 150 151 152 153
           j < csr_crows_data[b * (rows + 1) + i + 1];
           j++) {
        coo_rows_data[index] = i;
        if (batch_ptr) {
          batch_ptr[index] = b;
        }
        ++index;
      }
    }
  }

154
  memcpy(coo_cols_data, csr_cols_data, sizeof(IntT) * non_zero_num);
155 156 157 158
  memcpy(coo_values_data, csr_values_data, sizeof(T) * non_zero_num);
  out->SetMember(indices, values, x_dims, true);
}

159
template <typename T, typename Context>
160 161 162 163 164 165
void CsrToCooKernel(const Context& dev_ctx,
                    const SparseCsrTensor& x,
                    SparseCooTensor* out) {
  PD_VISIT_BASE_INTEGRAL_TYPES(x.crows().dtype(), "CsrToCooCPUKernel", ([&] {
                                 CsrToCooCPUKernel<T, data_t>(dev_ctx, x, out);
                               }));
166 167 168
}

template <typename T, typename IntT>
169 170 171
void CooToCsrCPUKernel(const CPUContext& dev_ctx,
                       const SparseCooTensor& x,
                       SparseCsrTensor* out) {
172 173 174 175
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
176
                    phi::errors::InvalidArgument(
177 178 179 180 181 182 183
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

184 185 186
  phi::DenseTensor crows;
  crows.Resize({batchs * (rows + 1)});
  IntT* csr_crows_data = dev_ctx.template Alloc<IntT>(&crows);
Z
zyfncg 已提交
187

188 189 190
  phi::DenseTensor cols;
  cols.Resize({non_zero_num});
  IntT* csr_cols_data = dev_ctx.template Alloc<IntT>(&cols);
Z
zyfncg 已提交
191

192 193 194
  phi::DenseTensor values;
  values.Resize({non_zero_num});
  T* csr_values_data = dev_ctx.template Alloc<T>(&values);
195

196 197
  const auto& coo_indices = x.indices();
  const auto& coo_values = x.values();
198 199
  const IntT* batchs_ptr = coo_indices.data<IntT>();
  const IntT* coo_rows_data =
Z
zhangkaihuo 已提交
200
      x_dims.size() == 2 ? batchs_ptr : batchs_ptr + non_zero_num;
201
  const IntT* coo_cols_data = coo_rows_data + non_zero_num;
202 203 204 205 206 207
  const T* coo_values_data = coo_values.data<T>();

  std::vector<int64_t> offsets(batchs, 0);
  if (batchs > 1) {
    for (int i = 0; i < non_zero_num; i++) {
      if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
Z
zhangkaihuo 已提交
208 209 210 211 212
        const int start = batchs_ptr[i];
        const int end = i == non_zero_num - 1 ? batchs : batchs_ptr[i + 1];
        for (int j = start; j < end; j++) {
          offsets[j] = i + 1;
        }
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
      }
    }
  } else {
    offsets[0] = non_zero_num;
  }

  for (int b = 0; b < batchs; b++) {
    int batch_start = 0;
    int batch_non_zero_num = offsets[b];
    if (b > 0) {
      batch_start = offsets[b - 1];
      batch_non_zero_num -= batch_start;
    }
    auto* coo_rows_ptr = coo_rows_data + batch_start;
    for (int i = 0; i <= coo_rows_ptr[0]; i++) {
      csr_crows_data[b * (rows + 1) + i] = 0;
    }
    for (int64_t i = 1; i < batch_non_zero_num; i++) {
231
      for (IntT j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
232 233 234
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
235
    for (IntT i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1; i++) {
236 237
      csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
    }
Z
zhangkaihuo 已提交
238 239 240
    if (batch_non_zero_num == 0) {
      memset(csr_crows_data + b * (rows + 1), 0, sizeof(IntT) * (rows + 1));
    }
241 242
  }

243
  memcpy(csr_cols_data, coo_cols_data, sizeof(IntT) * non_zero_num);
244
  memcpy(csr_values_data, coo_values_data, sizeof(T) * non_zero_num);
245
  out->SetMember(crows, cols, values, x_dims);
246 247
}

Z
zhangkaihuo 已提交
248
template <typename T, typename Context>
249 250 251 252 253 254
void CooToCsrKernel(const Context& dev_ctx,
                    const SparseCooTensor& x,
                    SparseCsrTensor* out) {
  PD_VISIT_BASE_INTEGRAL_TYPES(x.indices().dtype(), "CooToCsrCPUKernel", ([&] {
                                 CooToCsrCPUKernel<T, data_t>(dev_ctx, x, out);
                               }));
255 256 257
}

template <typename T, typename IntT>
258 259 260
void CooToDenseCPUKernel(const CPUContext& dev_ctx,
                         const SparseCooTensor& x,
                         DenseTensor* out) {
Z
zhangkaihuo 已提交
261 262
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
263 264
  const auto indices = x.indices();
  const auto values = x.values();
Z
zhangkaihuo 已提交
265 266 267 268 269
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
Z
zhangkaihuo 已提交
270
  const int64_t dense_dim = x.dense_dim();
Z
zhangkaihuo 已提交
271 272

  const T* x_data = values.data<T>();
273 274
  *out = phi::Empty(dev_ctx,
                    DenseTensorMeta(x.dtype(), x.dims(), x.values().layout()));
Z
zhangkaihuo 已提交
275
  T* out_data = out->data<T>();
Z
zhangkaihuo 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

  memset(out_data, 0, sizeof(T) * out->numel());
  for (auto i = 0; i < non_zero_num; i++) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
291
      index += indices.data<IntT>()[j * non_zero_num + i] * sparse_offsets[j];
Z
zhangkaihuo 已提交
292 293 294 295 296 297 298 299
    }

    for (int j = 0; j < base_offset; j++) {
      out_data[index * base_offset + j] = x_data[i * base_offset + j];
    }
  }
}

300
template <typename T, typename Context>
301 302 303
void CooToDenseKernel(const Context& dev_ctx,
                      const SparseCooTensor& x,
                      DenseTensor* out) {
304
  PD_VISIT_BASE_INTEGRAL_TYPES(
305 306
      x.indices().dtype(), "CooToDenseCPUKernel", ([&] {
        CooToDenseCPUKernel<T, data_t>(dev_ctx, x, out);
307 308 309
      }));
}

310
}  // namespace sparse
311
}  // namespace phi
312

313
PD_REGISTER_KERNEL(dense_to_coo,
314 315
                   CPU,
                   ALL_LAYOUT,
316
                   phi::sparse::DenseToCooKernel,
317 318 319 320 321 322 323 324
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
325

326
PD_REGISTER_KERNEL(csr_to_coo,
327 328
                   CPU,
                   ALL_LAYOUT,
329
                   phi::sparse::CsrToCooKernel,
330 331 332 333 334 335 336 337
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
338

339
PD_REGISTER_KERNEL(coo_to_csr,
340 341
                   CPU,
                   ALL_LAYOUT,
342
                   phi::sparse::CooToCsrKernel,
343 344
                   float,
                   double,
345
                   phi::dtype::float16,
346 347 348 349 350 351
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

352
PD_REGISTER_KERNEL(dense_to_csr,
353 354
                   CPU,
                   ALL_LAYOUT,
355
                   phi::sparse::DenseToCsrKernel,
356 357
                   float,
                   double,
358
                   phi::dtype::float16,
359 360 361 362 363
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
364

365
PD_REGISTER_KERNEL(coo_to_dense,
Z
zhangkaihuo 已提交
366 367
                   CPU,
                   ALL_LAYOUT,
368
                   phi::sparse::CooToDenseKernel,
Z
zhangkaihuo 已提交
369 370
                   float,
                   double,
371
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
372 373 374 375 376 377
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

378
PD_REGISTER_KERNEL(csr_to_dense,
Z
zhangkaihuo 已提交
379 380
                   CPU,
                   ALL_LAYOUT,
381
                   phi::sparse::CsrToDenseKernel,
Z
zhangkaihuo 已提交
382 383
                   float,
                   double,
384
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
385 386 387 388 389
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
390

391
PD_REGISTER_KERNEL(values_coo,
392 393
                   CPU,
                   ALL_LAYOUT,
394
                   phi::sparse::ValuesCooKernel,
395 396 397 398 399 400 401 402 403 404 405
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

406
PD_REGISTER_KERNEL(values_csr,
407 408
                   CPU,
                   ALL_LAYOUT,
409
                   phi::sparse::ValuesCsrKernel,
410 411 412 413 414 415 416 417 418 419
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
420 421 422 423 424 425 426 427 428 429 430 431

PD_REGISTER_KERNEL(sparse_coo_tensor,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooTensorKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {}