tester_helper.h 32.2 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
L
luotao1 已提交
20
#include <memory>
T
Tao Luo 已提交
21
#include <string>
L
luotao1 已提交
22
#include <thread>  // NOLINT
L
luotao1 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <vector>
Y
Yiqun Liu 已提交
25 26 27
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
28
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
29
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
30 31 32
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
33
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
36
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
40
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
41
DEFINE_string(infer_model, "", "model path");
42 43
DEFINE_string(fp32_model, "", "FP32 model path");
DEFINE_string(int8_model, "", "INT8 model path");
L
luotao1 已提交
44
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
45
DEFINE_string(refer_result, "", "reference result for comparison");
46
DEFINE_int32(batch_size, 1, "batch size");
47 48
DEFINE_bool(with_accuracy_layer, true,
            "Calculate the accuracy while label is in the input");
49 50
DEFINE_bool(enable_fp32, true, "Enable FP32 type prediction");
DEFINE_bool(enable_int8, true, "Enable INT8 type prediction");
51 52 53
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
L
luotao1 已提交
54 55 56
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
57 58
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
59 60
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
61
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
62
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
63
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
64 65 66
DEFINE_bool(warmup, false,
            "Use warmup to calculate elapsed_time more accurately. "
            "To reduce CI time, it sets false in default.");
L
luotao1 已提交
67

68
DECLARE_bool(profile);
L
luotao1 已提交
69
DECLARE_int32(paddle_num_threads);
70

L
luotao1 已提交
71 72 73
namespace paddle {
namespace inference {

74 75
using paddle::framework::proto::VarType;

76 77 78 79 80 81 82 83 84 85 86 87 88
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

89
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
90
  const auto *analysis_config =
91
      reinterpret_cast<const AnalysisConfig *>(config);
92
  if (use_analysis) {
93
    LOG(INFO) << *analysis_config;
94 95
    return;
  }
96
  LOG(INFO) << analysis_config->ToNativeConfig();
97
}
Y
Yan Chunwei 已提交
98

99 100 101 102 103 104 105 106
void CheckError(float data_ref, float data) {
  if (std::abs(data_ref) > 1) {
    CHECK_LE(std::abs((data_ref - data) / data_ref), FLAGS_accuracy);
  } else {
    CHECK_LE(std::abs(data_ref - data), FLAGS_accuracy);
  }
}

107
// Compare result between two PaddleTensor
L
luotao1 已提交
108
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
109
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
110
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
111
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
112 113
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
114
    auto &ref_out = ref_outputs[i];
115 116
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
117
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
133
          CheckError(pdata_ref[j], pdata[j]);
T
tensor-tang 已提交
134 135 136
        }
        break;
      }
137 138 139 140 141 142 143 144
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
145 146 147 148 149 150 151 152
      case PaddleDType::UINT8: {
        uint8_t *pdata = static_cast<uint8_t *>(out.data.data());
        uint8_t *pdata_ref = static_cast<uint8_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
L
luotao1 已提交
153 154 155 156
    }
  }
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
173
        EXPECT_EQ(size, static_cast<size_t>(ref_size));
174 175 176 177 178 179 180 181 182 183
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = ref_out.data<float>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
184
          CheckError(pdata_ref[j], pdata[j]);
185 186 187
        }
        break;
      }
L
luotao1 已提交
188 189 190 191 192 193 194 195 196
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = ref_out.data<int32_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
197 198 199 200 201 202 203 204 205
      case PaddleDType::UINT8: {
        uint8_t *pdata = static_cast<uint8_t *>(out.data.data());
        uint8_t *pdata_ref = ref_out.data<uint8_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
206 207 208 209
    }
  }
}

210
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
211
    const PaddlePredictor::Config *config, bool use_analysis = true) {
212
  const auto *analysis_config =
213
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
214
  if (use_analysis) {
215
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
216
  }
217 218
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
219 220
}

221
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
222

223
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
224
                                                   int *num_ops) {
225
  std::unordered_map<std::string, int> res;
226
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
227 228 229 230 231 232
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
233 234 235 236
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
237 238
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
239 240 241 242
      ++num;
    }
  }
  *num_ops = num;
243
  return *fusion_status;
T
Tao Luo 已提交
244 245
}

T
Tao Luo 已提交
246
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
247 248
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
249
                       std::string params_filename = "params",
N
nhzlx 已提交
250 251
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
252
  // Set fake_image_data
253 254 255 256 257
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0,
                    platform::errors::InvalidArgument(
                        "In SetFakeImageInput, expected test_all_data = false, "
                        "but now test_all_data=",
                        FLAGS_test_all_data));
258 259 260 261 262 263 264 265 266 267 268
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
269
  if (feed_names) {
270 271 272 273 274 275 276
    PADDLE_ENFORCE_EQ(
        feed_names->size(), feed_target_shapes.size(),
        platform::errors::InvalidArgument(
            "The size of feeds_names and size of "
            "feed_target_shapes must be equal, but now feeds_names "
            "size is %d and feed_target_shapes size is %d",
            feed_names->size(), feed_target_shapes.size()));
T
tensor-tang 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
291
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
T
tensor-tang 已提交
292 293 294 295 296 297
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
298 299
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
300
    }
T
Tao Luo 已提交
301 302 303 304
  }
  (*inputs).emplace_back(input_slots);
}

305 306 307 308 309 310 311 312 313 314 315 316
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
317 318 319 320 321 322 323 324 325 326 327
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
328 329
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
330 331
    } else if (input.dtype == PaddleDType::UINT8) {
      ZeroCopyTensorAssignData<uint8_t>(tensor.get(), input.data);
L
luotao1 已提交
332 333 334 335 336
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
337

L
luotao1 已提交
338 339
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
340
                      std::vector<std::vector<PaddleTensor>> *outputs,
341 342
                      int num_threads, int tid,
                      const VarType::Type data_type = VarType::FP32) {
L
luotao1 已提交
343 344 345 346 347
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
348
  outputs->resize(1);
L
luotao1 已提交
349 350 351
  Timer warmup_timer;
  warmup_timer.tic();
  if (!FLAGS_zero_copy) {
352
    predictor->Run(inputs[0], &(*outputs)[0], batch_size);
L
luotao1 已提交
353 354
  } else {
    predictor->ZeroCopyRun();
355
  }
356
  PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1, data_type);
L
luotao1 已提交
357 358 359 360
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
}
361

L
luotao1 已提交
362 363
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
364
                   std::vector<std::vector<PaddleTensor>> *outputs,
365
                   int num_threads, int tid,
366 367
                   const VarType::Type data_type = VarType::FP32,
                   float *sample_latency = nullptr) {
L
luotao1 已提交
368
  int num_times = FLAGS_repeat;
369
  int iterations = inputs.size();  // process the whole dataset ...
370 371
  if (FLAGS_iterations > 0 &&
      FLAGS_iterations < static_cast<int64_t>(inputs.size()))
372 373 374 375 376
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
L
luotao1 已提交
377 378
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
379
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
380
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
381
#endif
382
  int predicted_num = 0;
L
luotao1 已提交
383
  if (!FLAGS_zero_copy) {
384
    for (int i = 0; i < iterations; i++) {
385
      run_timer.tic();
L
luotao1 已提交
386
      for (int j = 0; j < num_times; j++) {
387
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
388
      }
389 390 391 392 393 394
      elapsed_time += run_timer.toc();

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
395
    }
L
luotao1 已提交
396
  } else {
397
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
398 399 400 401 402 403
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
404 405 406 407 408

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
409 410
    }
  }
411

Y
Yiqun Liu 已提交
412
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
413
  ProfilerStop();
Y
Yiqun Liu 已提交
414
#endif
N
nhzlx 已提交
415

416 417
  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
418
            iterations, data_type);
419 420 421 422

  if (sample_latency != nullptr)
    *sample_latency = batch_latency / FLAGS_batch_size;

L
luotao1 已提交
423 424 425
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
426 427
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
L
luotao1 已提交
428
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
429 430 431
  }
}

L
luotao1 已提交
432 433 434
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
435
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true,
436 437
    const VarType::Type data_type = VarType::FP32,
    float *sample_latency = nullptr) {
L
luotao1 已提交
438
  auto predictor = CreateTestPredictor(config, use_analysis);
439
  if (FLAGS_warmup) {
440
    PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type);
441
  }
442 443
  PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type,
                sample_latency);
L
luotao1 已提交
444 445
}

L
luotao1 已提交
446
void TestMultiThreadPrediction(
447
    const PaddlePredictor::Config *config,
448
    const std::vector<std::vector<PaddleTensor>> &inputs,
449
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
T
Tao Luo 已提交
450
    bool use_analysis = true) {
L
luotao1 已提交
451
  std::vector<std::thread> threads;
L
luotao1 已提交
452 453 454 455 456
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
457

L
luotao1 已提交
458 459 460 461
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
462
      std::vector<std::vector<PaddleTensor>> outputs_tid;
L
luotao1 已提交
463
      auto &predictor = predictors[tid];
464 465 466 467
      if (FLAGS_warmup) {
        PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
                         tid);
      }
468
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
L
luotao1 已提交
469 470 471 472 473 474 475
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

476
void TestPrediction(const PaddlePredictor::Config *config,
477
                    const std::vector<std::vector<PaddleTensor>> &inputs,
478 479
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
480
  PrintConfig(config, use_analysis);
L
luotao1 已提交
481
  if (num_threads == 1) {
T
Tao Luo 已提交
482
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
483
  } else {
T
Tao Luo 已提交
484 485
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
486 487 488
  }
}

489 490
void SummarizeAccuracy(float avg_acc_fp32, float avg_acc_int8,
                       int compared_idx) {
491 492 493 494 495 496 497 498 499 500 501 502 503 504
  PADDLE_ENFORCE_LE(
      compared_idx, 2,
      platform::errors::InvalidArgument(
          "The compared_idx should be <= 2. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
  PADDLE_ENFORCE_GE(
      compared_idx, 1,
      platform::errors::InvalidArgument(
          "The compared_idx should be >= 1. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
505
  std::string prefix = (compared_idx == 1) ? "top1_accuracy " : "mAP ";
506
  LOG(INFO) << "--- Accuracy summary --- ";
507 508 509 510 511 512 513 514
  LOG(INFO) << "Accepted " << prefix
            << "drop threshold: " << FLAGS_quantized_accuracy
            << ". (condition: (FP32_" << prefix << " - INT8_" << prefix
            << ") <= threshold)";
  LOG(INFO) << "FP32: avg " << prefix << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc_fp32;
  LOG(INFO) << "INT8: avg " << prefix << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc_int8;
515 516
}

517 518 519 520 521 522 523 524
void SummarizePerformance(const char *title, float sample) {
  CHECK_GT(sample, 0.0);
  auto throughput = 1000.0 / sample;
  LOG(INFO) << title << ": avg fps: " << std::fixed << std::setw(6)
            << std::setprecision(4) << throughput << ", avg latency: " << sample
            << " ms";
}

525 526
void SummarizePerformance(float sample_latency_fp32,
                          float sample_latency_int8) {
527 528
  if (FLAGS_enable_fp32) SummarizePerformance("FP32", sample_latency_fp32);
  if (FLAGS_enable_int8) SummarizePerformance("INT8", sample_latency_int8);
529 530
}

531 532
float CompareAccuracyOne(
    const std::vector<std::vector<PaddleTensor>> &output_slots,
533
    int compared_idx) {
534 535 536 537
  PADDLE_ENFORCE_GT(output_slots.size(), 0,
                    platform::errors::InvalidArgument(
                        "The accuracy vector is empty. The accuracy vector "
                        "size should be bigger than 0"));
538

539 540 541 542 543 544 545
  float total_accs{0};

  for (size_t i = 0; i < output_slots.size(); ++i) {
    switch (compared_idx) {
      case 1:
        PADDLE_ENFORCE_GE(
            output_slots[i].size(), 2UL,
546 547 548 549
            platform::errors::InvalidArgument(
                "To achieve top 1 accuracy, output_slots size "
                "must be bigger than or equal to 2, but now the size is %d",
                output_slots[i].size()));
550 551 552
        break;
      case 2:
        PADDLE_ENFORCE_GE(
553 554 555 556 557 558
            output_slots[i].size(), 3UL,
            platform::errors::InvalidArgument(
                "To achieve top 5 accuracy or mean Average "
                "Precision (mAP), output_slots size must be "
                "bigger than or equal to 3, but now the size is %d",
                output_slots[i].size()));
559 560 561 562
        break;
      default:
        throw std::invalid_argument(
            "CompareAccuracy: compared_idx is out of range.");
563 564
    }

565
    if (output_slots[i][compared_idx].lod.size() > 0)
566
      throw std::invalid_argument("CompareAccuracy: output has nonempty LoD.");
567 568

    if (output_slots[i][compared_idx].dtype != paddle::PaddleDType::FLOAT32)
569
      throw std::invalid_argument(
570
          "CompareAccuracy: output is of a wrong type.");
571 572 573

    total_accs +=
        *static_cast<float *>(output_slots[i][compared_idx].data.data());
574
  }
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

  return total_accs / output_slots.size();
}

void CompareAccuracy(
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref,
    int compared_idx) {
  if ((FLAGS_enable_fp32 && FLAGS_enable_int8) &&
      (output_slots_quant.size() == 0 || output_slots_ref.size()) == 0)
    throw std::invalid_argument(
        "CompareAccuracy: output_slots vector is empty.");

  float avg_acc_quant = 0.0;
  float avg_acc_ref = 0.0;

  if (FLAGS_enable_int8)
    avg_acc_quant = CompareAccuracyOne(output_slots_quant, compared_idx);

  if (FLAGS_enable_fp32)
    avg_acc_ref = CompareAccuracyOne(output_slots_ref, compared_idx);
596

597
  SummarizeAccuracy(avg_acc_ref, avg_acc_quant, compared_idx);
598 599 600 601 602 603 604

  if (FLAGS_enable_fp32) CHECK_GT(avg_acc_ref, 0.0);

  if (FLAGS_enable_int8) CHECK_GT(avg_acc_quant, 0.0);

  if (FLAGS_enable_fp32 && FLAGS_enable_int8)
    CHECK_LE(avg_acc_ref - avg_acc_quant, FLAGS_quantized_accuracy);
605 606
}

L
luotao1 已提交
607 608 609 610 611 612 613 614 615
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
616 617 618 619
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
620 621 622 623 624 625
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
626
void CompareNativeAndAnalysis(
627
    const PaddlePredictor::Config *config,
628
    const std::vector<std::vector<PaddleTensor>> &inputs) {
629
  PrintConfig(config, true);
630
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
631
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
632
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
633 634 635 636 637 638 639 640
  PADDLE_ENFORCE_GT(native_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The native outputs is empty. The native outputs "
                        "vector size must be bigger than 0"));
  PADDLE_ENFORCE_GT(analysis_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The analysis outputs is empty. The analysis outputs "
                        "vector size must be bigger than 0"));
641
  CompareResult(analysis_outputs.back(), native_outputs.back());
T
Tao Luo 已提交
642 643
}

644
void CompareQuantizedAndAnalysis(
645
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
646 647
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
648 649 650 651 652 653
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
654 655 656 657 658 659 660
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
661
  float sample_latency_fp32{-1};
662 663 664 665 666

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }
667 668 669 670 671

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
672
  float sample_latency_int8{-1};
673

674 675 676 677
  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true,
                            VarType::INT8, &sample_latency_int8);
  }
678
  SummarizePerformance(sample_latency_fp32, sample_latency_int8);
679

680
  CompareAccuracy(quantized_outputs, analysis_outputs, compared_idx);
681 682
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
void CompareAnalysisAndAnalysis(
    const AnalysisConfig *config1, const AnalysisConfig *config2,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const bool with_accuracy_layer = FLAGS_with_accuracy_layer,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));

  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg1 = reinterpret_cast<const PaddlePredictor::Config *>(config1);
  PrintConfig(cfg1, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg1, inputs, &analysis_outputs, true,
                            VarType::FP32, &sample_latency_fp32);
  }

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *cfg2 = reinterpret_cast<const PaddlePredictor::Config *>(config2);
  PrintConfig(cfg2, true);
  std::vector<std::vector<PaddleTensor>> int8_outputs;
  float sample_latency_int8{-1};

  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(cfg2, inputs, &int8_outputs, true, VarType::INT8,
                            &sample_latency_int8);
  }
  SummarizePerformance(sample_latency_fp32, sample_latency_int8);
  if (with_accuracy_layer) {
    CompareAccuracy(int8_outputs, analysis_outputs, compared_idx);
  }
}

N
nhzlx 已提交
725 726 727 728 729 730 731 732 733 734
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

735
void CompareAnalysisAndZeroCopy(
736
    PaddlePredictor::Config *config, PaddlePredictor::Config *config1,
737 738 739 740 741 742 743 744 745
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
746 747
  reinterpret_cast<AnalysisConfig *>(config1)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config1, true);
748 749 750 751 752 753
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
754
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
755 756 757 758 759
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

760 761 762 763 764 765 766
void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) {
  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(cfg),
      FLAGS_use_analysis);
  (static_cast<AnalysisPredictor *>(predictor.get()))->SaveOptimModel(dstPath);
}

L
luotao1 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
838
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
L
luotao1 已提交
839
                                  [](int a, int b) { return a * b; });
840
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
L
luotao1 已提交
841 842 843 844 845 846 847
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
848
    if (a.type() == VarType::FP32) {
L
luotao1 已提交
849 850 851 852 853 854 855 856
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
857
    } else if (a.type() == VarType::INT64) {
L
luotao1 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
889 890
}  // namespace inference
}  // namespace paddle