unpool_op.cc 5.9 KB
Newer Older
S
sweetsky0901 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sweetsky0901 已提交
14 15 16 17 18 19 20

#include "paddle/operators/unpool_op.h"
namespace paddle {
namespace operators {

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
S
sweetsky0901 已提交
21
  Unpool2dOpMaker(framework::OpProto* proto,
S
sweetsky0901 已提交
22
                  framework::OpAttrChecker* op_checker)
S
sweetsky0901 已提交
23
      : OpProtoAndCheckerMaker(proto, op_checker) {
S
sweetsky0901 已提交
24 25
    AddInput(
        "X",
S
sweetsky0901 已提交
26 27 28
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
29 30
    AddInput(
        "Indices",
S
sweetsky0901 已提交
31 32 33
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
34
    AddOutput("Out",
S
sweetsky0901 已提交
35 36 37 38 39
              "(Tensor) The output tensor of unpool operator."
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of feature.");
S
sweetsky0901 已提交
40 41
    AddAttr<std::vector<int>>(
        "ksize",
S
sweetsky0901 已提交
42
        "(vector), the unpooling window size(height, width) "
S
sweetsky0901 已提交
43
        "of unpooling operator.");
S
sweetsky0901 已提交
44 45 46
    AddAttr<std::vector<int>>("strides",
                              "(vector, default:{1, 1}), "
                              "strides (height, width) of unpooling operator.")
S
sweetsky0901 已提交
47
        .SetDefault({1, 1});
S
sweetsky0901 已提交
48 49 50
    AddAttr<std::vector<int>>("paddings",
                              "(vector defalut:{0,0}), "
                              "paddings (height, width) of unpooling operator.")
S
sweetsky0901 已提交
51
        .SetDefault({0, 0});
S
sweetsky0901 已提交
52 53
    AddAttr<std::string>(
        "unpooling_type",
S
sweetsky0901 已提交
54 55
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
S
sweetsky0901 已提交
56
    AddComment(R"DOC(
S
sweetsky0901 已提交
57 58 59
        "Input shape: $(N, C_{in}, H_{in}, W_{in})$
        Output shape: $(N, C_{out}, H_{out}, W_{out})$
        Where
S
sweetsky0901 已提交
60 61 62 63
          $$
            H_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\
            W_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1]
          $$
S
sweetsky0901 已提交
64 65
        Paper: http://www.matthewzeiler.com/wp-content/uploads/2017
        /07/iccv2011.pdf
S
sweetsky0901 已提交
66 67 68 69 70
        )DOC");
  }
};

int OutputSize(int input_size, int ksize, int padding, int stride) {
S
sweetsky0901 已提交
71
  int output_size = (input_size - 1) * stride - 2 * padding + ksize;
S
sweetsky0901 已提交
72 73 74 75
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
76 77
 protected:
  framework::OpKernelType GetKernelType(
S
sweetsky0901 已提交
78 79 80
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
S
sweetsky0901 已提交
81
        ctx.device_context());
S
sweetsky0901 已提交
82
  }
S
sweetsky0901 已提交
83

S
sweetsky0901 已提交
84 85 86
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
S
sweetsky0901 已提交
87 88 89 90 91
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of UnpoolOp"
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Indices"),
                   "Input(Indices) of UnpoolOp"
S
sweetsky0901 已提交
92
                   "should not be null.");
S
sweetsky0901 已提交
93
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
S
sweetsky0901 已提交
94
                   "Output(Out) of UnpoolOp should not be null.");
S
sweetsky0901 已提交
95 96
    auto in_x_dims = ctx->GetInputDim("X");
    auto in_y_dims = ctx->GetInputDim("Indices");
S
sweetsky0901 已提交
97 98
    std::string unpooling_type = ctx->Attrs()
                                 .Get<std::string>("unpooling_type");
S
sweetsky0901 已提交
99 100 101
    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings =
S
sweetsky0901 已提交
102
        ctx->Attrs().Get<std::vector<int>>("paddings");
S
sweetsky0901 已提交
103
    PADDLE_ENFORCE(in_x_dims.size() == 4,
S
sweetsky0901 已提交
104
                   "Unpooling intput must be of 4-dimensional.");
S
sweetsky0901 已提交
105 106 107 108
    PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims);
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(
S
sweetsky0901 已提交
109
          OutputSize(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
S
sweetsky0901 已提交
110 111 112
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
S
sweetsky0901 已提交
113 114 115
};

class UnpoolOpGrad : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
116 117
 protected:
  framework::OpKernelType GetKernelType(
S
sweetsky0901 已提交
118 119
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
S
sweetsky0901 已提交
120 121
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
S
sweetsky0901 已提交
122
  }
S
sweetsky0901 已提交
123

S
sweetsky0901 已提交
124 125 126 127 128
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
S
sweetsky0901 已提交
129
                   "Input(X@GRAD) should not be null.");
S
sweetsky0901 已提交
130 131
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
S
sweetsky0901 已提交
132
};
S
sweetsky0901 已提交
133 134
}  // namespace operators
}  // namespace paddle
S
sweetsky0901 已提交
135 136

namespace ops = paddle::operators;
S
sweetsky0901 已提交
137
REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad,
S
sweetsky0901 已提交
138
            ops::UnpoolOpGrad);
S
sweetsky0901 已提交
139 140 141
REGISTER_OP_CPU_KERNEL(unpool,
                       ops::UnpoolKernel<paddle::platform::CPUPlace, float>,
                       ops::UnpoolKernel<paddle::platform::CPUPlace, double>);
S
sweetsky0901 已提交
142
REGISTER_OP_CPU_KERNEL(
S
sweetsky0901 已提交
143 144
    unpool_grad, ops::UnpoolGradKernel<paddle::platform::CPUPlace, float>,
    ops::UnpoolGradKernel<paddle::platform::CPUPlace, double>);
S
sweetsky0901 已提交
145