unpool_op.cc 5.2 KB
Newer Older
S
sweetsky0901 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

#include "paddle/operators/unpool_op.h"
namespace paddle {
namespace operators {

using framework::Tensor;

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
S
sweetsky0901 已提交
23 24
  Unpool2dOpMaker(framework::OpProto* proto,  \
                  framework::OpAttrChecker* op_checker)
S
sweetsky0901 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
    AddInput("Y",
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
    AddOutput("Out",
        "(Tensor) The output tensor of unpool operator."
        "The format of output tensor is also NCHW."
        "Where N is batch size, C is "
        "the number of channels, H and W is the height and "
        "width of feature.");
    AddAttr<std::vector<int>>("ksize",
        "(vector ), the unpooling window size(height, width) "
        "of unpooling operator.");
S
sweetsky0901 已提交
43 44
    AddAttr<std::vector<int>>("strides",
        "(vector, default:{1, 1}), "
S
sweetsky0901 已提交
45 46
        "strides(height, width) of unpooling operator.")
        .SetDefault({1, 1});
S
sweetsky0901 已提交
47 48
    AddAttr<std::vector<int>>("paddings",
        "(vector defalut:{0,0}), "
S
sweetsky0901 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        "paddings(height, width) of unpooling operator.")
        .SetDefault({0, 0});
    AddAttr<std::string>("unpoolingType",
        "(string), unpooling type, can be \"max\" for max-unpooling "
        "and \"avg\" for average-unpooling.")
        .InEnum({"max", "avg"});
    AddComment(R"DOC(

        )DOC");
  }
};

int OutputSize(int input_size, int ksize, int padding, int stride) {
  int output_size = (input_size -1) * stride - 2 * padding + ksize;
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of UnpoolOp"
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of UnpoolOp"
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of UnpoolOp should not be null.");

    auto in_x_dims = ctx->GetInputDim("X");
    auto in_y_dims = ctx->GetInputDim("Y");
S
sweetsky0901 已提交
79 80
    std::string unpooling_type =  \
      ctx->Attrs().Get<std::string>("unpooling_type");
S
sweetsky0901 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
                    "Unpooling intput should be 4-D or 5-D tensor.");

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(
        OutputSize(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
};

class UnpoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
S
sweetsky0901 已提交
102
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must not be null.");
S
sweetsky0901 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                                  "Input(Out@GRAD) should not be null");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                                  "Input(X@GRAD) should not be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};
}    // namespace operators
}    // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(unpool2d, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool2d_grad,
            ops::UnpoolOpGrad);
S
sweetsky0901 已提交
116 117 118
REGISTER_OP_CPU_KERNEL(unpool2d,
                       ops::UnpoolKernel<paddle::platform::CPUPlace, float>,
                       ops::UnpoolKernel<paddle::platform::CPUPlace, double>);
S
sweetsky0901 已提交
119
REGISTER_OP_CPU_KERNEL(unpool2d_grad,
S
sweetsky0901 已提交
120 121 122 123
                      ops::UnpoolGradKernel<paddle::platform::CPUPlace,
                      float>,
                      ops::UnpoolGradKernel<paddle::platform::CPUPlace,
                      double>);