unpool_op.cc 5.8 KB
Newer Older
S
sweetsky0901 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sweetsky0901 已提交
14 15 16 17 18 19 20

#include "paddle/operators/unpool_op.h"
namespace paddle {
namespace operators {

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
S
sweetsky0901 已提交
21
  Unpool2dOpMaker(framework::OpProto* proto,
S
sweetsky0901 已提交
22
                  framework::OpAttrChecker* op_checker)
S
sweetsky0901 已提交
23
      : OpProtoAndCheckerMaker(proto, op_checker) {
S
sweetsky0901 已提交
24 25
    AddInput(
        "X",
S
sweetsky0901 已提交
26 27 28
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
29 30
    AddInput(
        "Indices",
S
sweetsky0901 已提交
31 32 33
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
34
    AddOutput("Out",
S
sweetsky0901 已提交
35 36 37 38 39
              "(Tensor) The output tensor of unpool operator."
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of feature.");
S
sweetsky0901 已提交
40 41
    AddAttr<std::vector<int>>(
        "ksize",
S
sweetsky0901 已提交
42
        "(vector), the unpooling window size(height, width) "
S
sweetsky0901 已提交
43
        "of unpooling operator.");
S
sweetsky0901 已提交
44 45 46
    AddAttr<std::vector<int>>("strides",
                              "(vector, default:{1, 1}), "
                              "strides (height, width) of unpooling operator.")
S
sweetsky0901 已提交
47
        .SetDefault({1, 1});
S
sweetsky0901 已提交
48 49 50
    AddAttr<std::vector<int>>("paddings",
                              "(vector defalut:{0,0}), "
                              "paddings (height, width) of unpooling operator.")
S
sweetsky0901 已提交
51
        .SetDefault({0, 0});
S
sweetsky0901 已提交
52 53
    AddAttr<std::string>(
        "unpooling_type",
S
sweetsky0901 已提交
54 55
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
S
sweetsky0901 已提交
56
    AddComment(R"DOC(
S
sweetsky0901 已提交
57 58 59
        "Input shape: $(N, C_{in}, H_{in}, W_{in})$
        Output shape: $(N, C_{out}, H_{out}, W_{out})$
        Where
S
sweetsky0901 已提交
60 61 62 63
          $$
            H_{out} = (H_{in}−1) * strides[0] − 2 * paddings[0] + ksize[0] \\
            W_{out} = (W_{in}−1) * strides[1] − 2 * paddings[1] + ksize[1]
          $$
S
sweetsky0901 已提交
64 65
        Paper: http://www.matthewzeiler.com/wp-content/uploads/2017
        /07/iccv2011.pdf
S
sweetsky0901 已提交
66 67 68 69 70
        )DOC");
  }
};

int OutputSize(int input_size, int ksize, int padding, int stride) {
S
sweetsky0901 已提交
71
  int output_size = (input_size - 1) * stride - 2 * padding + ksize;
S
sweetsky0901 已提交
72 73 74 75
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
76 77 78
 protected:
  framework::OpKernelType GetKernelType(
    const framework::ExecutionContext& ctx) const override {
S
sweetsky0901 已提交
79
      return framework::OpKernelType(
S
sweetsky0901 已提交
80
      framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
S
sweetsky0901 已提交
81 82
        ctx.device_context());
    }
S
sweetsky0901 已提交
83

S
sweetsky0901 已提交
84 85 86 87
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of UnpoolOp"
S
sweetsky0901 已提交
88
                     "should not be null.");
S
sweetsky0901 已提交
89
    PADDLE_ENFORCE(ctx->HasInput("Indices"), "Input(Indices) of UnpoolOp"
S
sweetsky0901 已提交
90
                   "should not be null.");
S
sweetsky0901 已提交
91
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
S
sweetsky0901 已提交
92
                   "Output(Out) of UnpoolOp should not be null.");
S
sweetsky0901 已提交
93 94 95
    auto in_x_dims = ctx->GetInputDim("X");
    auto in_y_dims = ctx->GetInputDim("Indices");
    std::string unpooling_type =
S
sweetsky0901 已提交
96
        ctx->Attrs().Get<std::string>("unpooling_type");
S
sweetsky0901 已提交
97 98 99
    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings =
S
sweetsky0901 已提交
100
        ctx->Attrs().Get<std::vector<int>>("paddings");
S
sweetsky0901 已提交
101
    PADDLE_ENFORCE(in_x_dims.size() == 4,
S
sweetsky0901 已提交
102
                      "Unpooling intput must be of 4-dimensional.");
S
sweetsky0901 已提交
103 104 105 106 107 108 109 110
    PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims);
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(
        OutputSize(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
S
sweetsky0901 已提交
111 112 113
};

class UnpoolOpGrad : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
114 115 116 117 118 119 120
 protected:
  framework::OpKernelType GetKernelType(
    const framework::ExecutionContext& ctx) const override {
      return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
    }
S
sweetsky0901 已提交
121

S
sweetsky0901 已提交
122 123 124 125 126
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
S
sweetsky0901 已提交
127
                                  "Input(X@GRAD) should not be null.");
S
sweetsky0901 已提交
128 129
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
S
sweetsky0901 已提交
130
};
S
sweetsky0901 已提交
131 132
} // namespace operators
} // namespace paddle
S
sweetsky0901 已提交
133 134

namespace ops = paddle::operators;
S
sweetsky0901 已提交
135
REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad,
S
sweetsky0901 已提交
136
            ops::UnpoolOpGrad);
S
sweetsky0901 已提交
137
REGISTER_OP_CPU_KERNEL(
S
sweetsky0901 已提交
138 139
    unpool, ops::UnpoolKernel<paddle::platform::CPUPlace, float>,
    ops::UnpoolKernel<paddle::platform::CPUPlace, double>);
S
sweetsky0901 已提交
140
REGISTER_OP_CPU_KERNEL(
S
sweetsky0901 已提交
141 142
    unpool_grad, ops::UnpoolGradKernel<paddle::platform::CPUPlace, float>,
    ops::UnpoolGradKernel<paddle::platform::CPUPlace, double>);
S
sweetsky0901 已提交
143