/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/fusion_gru_op.h" #include // for memcpy #include #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/cpu_vec.h" #include "paddle/fluid/operators/math/fc_compute.h" #include "paddle/fluid/operators/math/sequence2batch.h" #include "paddle/fluid/platform/cpu_info.h" namespace paddle { namespace operators { void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of GRU should not be null."); PADDLE_ENFORCE(ctx->HasInput("WeightX"), "Input(WeightX) of GRU should not be null."); PADDLE_ENFORCE(ctx->HasInput("WeightH"), "Input(WeightH) of GRU should not be null."); PADDLE_ENFORCE(ctx->HasOutput("XX"), "Output(XX) of GRU should not be null."); PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"), "Output(ReorderedH0) of GRU should not be null."); PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"), "Output(BatchedInput) of GRU should not be null."); PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"), "Output(BatchedOut) of GRU should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Hidden"), "Output(Hidden) of GRU should not be null."); auto x_dims = ctx->GetInputDim("X"); PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2."); auto wx_dims = ctx->GetInputDim("WeightX"); PADDLE_ENFORCE_EQ(wx_dims.size(), 2, "The rank of Input(WeightX) should be 2."); PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1], "The first dimension of Input(WeightX) " "should be %d.", x_dims[1]); int frame_size = wx_dims[1] / 3; auto wh_dims = ctx->GetInputDim("WeightH"); PADDLE_ENFORCE_EQ(wh_dims.size(), 2, "The rank of Input(WeightH) should be 2."); PADDLE_ENFORCE_EQ(wh_dims[0], frame_size, "The first dimension of Input(WeightH) " "should be %d.", frame_size); PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size, "The second dimension of Input(WeightH) " "should be 3 * %d.", frame_size); if (ctx->HasInput("H0")) { auto h0_dims = ctx->GetInputDim("H0"); PADDLE_ENFORCE_EQ(h0_dims[1], frame_size, "The width of H0 must be equal to frame_size."); } if (ctx->HasInput("Bias")) { auto b_dims = ctx->GetInputDim("Bias"); PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2."); PADDLE_ENFORCE_EQ(b_dims[0], 1, "The first dimension of Input(Bias) should be 1."); PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3, "The shape of Bias must be [1, frame_size * 3]."); } framework::DDim out_dims({x_dims[0], frame_size}); ctx->SetOutputDim("Hidden", out_dims); ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]}); ctx->SetOutputDim("BatchedOut", out_dims); ctx->ShareLoD("X", "Hidden"); int xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1]; ctx->SetOutputDim("XX", {x_dims[0], xx_width}); ctx->ShareLoD("X", "XX"); } framework::OpKernelType FusionGRUOp::GetExpectedKernelType( const framework::ExecutionContext& ctx) const { return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), ctx.device_context()); } void FusionGRUOpMaker::Make() { AddInput("X", "(LoDTensor) the input is a LodTensor, which support " "variable-time length input sequence. The underlying tensor in " "this LoDTensor is a matrix with shape (T X M), where T is the " "total time steps in this mini-batch, M is the dim size of x."); AddInput("H0", "(Tensor, optional) The initial hidden state is an optional " "input. This is a tensor with shape (N x D), where N is the " "batch size, D is the hidden size.") .AsDispensable(); AddInput("WeightX", "(Tensor) The FC weight with shape (M x 3D)," "where M is the dim size of x, D is the hidden size. "); AddInput("WeightH", "(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. " "This weight is not exactly D x 3D as: {W_update, W_reset, W_state}" "Acutally they are D x 2D and D x D two part weights." "{W_update, W_reset; W_state}" "{D x (D + D); D x D}"); AddInput("Bias", "(Tensor, optional) (1 x 3D)." "Almost same as GRUOp." "Note: if have FC bias it should be added on this bias.") .AsDispensable(); AddOutput("ReorderedH0", "(Tensor) (N x D), which N is the min-batch size.") .AsIntermediate(); AddOutput("XX", "(LoDTensor) the result after X * WeightX (size is T x 3D)" " or batched_X (size is T x M), this will be automatically chosen," " where T is the total time steps in this mini-batch," " D is the hidden size, M is the dim size of x input.") .AsIntermediate(); AddOutput("BatchedInput", "(LoDTensor) (T x 3D)").AsIntermediate(); AddOutput("BatchedOut", "(LoDTensor) (T X D) save batched hidden.") .AsIntermediate(); AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp"); AddAttr("activation", "(string, default tanh) " "The activation type used for output candidate {h}_t.") .SetDefault("tanh"); AddAttr( "gate_activation", "(string, default sigmoid) " "The activation type used in update gate and reset gate.") .SetDefault("sigmoid"); AddAttr("is_reverse", "(bool, defalut: False) " "whether to compute reversed GRU.") .SetDefault(false); AddComment(R"DOC( The Fusion complete GRU Operator. This operator fuse the fully-connected operator into GRU, more details can refer to GRU op. )DOC"); } template class FusionGRUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { using DeviceContext = paddle::platform::CPUDeviceContext; auto* x = ctx.Input("X"); auto* wx = ctx.Input("WeightX"); auto* wh = ctx.Input("WeightH"); auto* bias = ctx.Input("Bias"); auto* h0 = ctx.Input("H0"); auto* reordered_h0 = ctx.Output("ReorderedH0"); auto* xx = ctx.Output("XX"); auto* batched_input = ctx.Output("BatchedInput"); auto* batched_out = ctx.Output("BatchedOut"); auto* hidden_out = ctx.Output("Hidden"); bool is_reverse = ctx.Attr("is_reverse"); std::function act_gate, act_state; std::function bias_sub; auto& act_gate_str = ctx.Attr("gate_activation"); auto& act_state_str = ctx.Attr("activation"); if (platform::jit::MayIUse(platform::jit::avx)) { math::VecActivations act_functor; act_gate = act_functor(act_gate_str); act_state = act_functor(act_state_str); bias_sub = math::vec_bias_sub; } else { math::VecActivations act_functor; act_gate = act_functor(act_gate_str); act_state = act_functor(act_state_str); bias_sub = math::vec_bias_sub; } const T* x_data = x->data(); const T* wx_data = wx->data(); const T* wh_data = wh->data(); T* xx_data = xx->mutable_data(ctx.GetPlace()); T* batched_input_data = batched_input->mutable_data(ctx.GetPlace()); T* batched_out_data = batched_out->mutable_data(ctx.GetPlace()); hidden_out->mutable_data(ctx.GetPlace()); auto x_dims = x->dims(); auto wx_dims = wx->dims(); const int D3 = wx_dims[1]; const int D = D3 / 3; const int D2 = D * 2; auto& dev_ctx = ctx.template device_context(); auto blas = math::GetBlas(dev_ctx); math::LoDTensor2BatchFunctor to_batch; if (x_dims[1] > wx_dims[1]) { math::FCCompute(blas, x_dims[0], wx_dims[1], x_dims[1], x_data, wx_data, xx_data, bias ? bias->data() : NULL); to_batch(dev_ctx, *xx, batched_input, true, is_reverse); } else { to_batch(dev_ctx, *x, xx, true, is_reverse); batched_input->set_lod(xx->lod()); math::FCCompute(blas, x_dims[0], wx_dims[1], x_dims[1], xx_data, wx_data, batched_input_data, bias ? bias->data() : NULL); } auto batched_lod = batched_input->lod(); const auto& seq_order = batched_lod[2]; const int max_bs = seq_order.size(); reordered_h0->Resize({max_bs, D}); int tstart = 0; T* prev_hidden_data = NULL; if (h0) { // reorder h0 T* reordered_h0_data = reordered_h0->mutable_data(ctx.GetPlace()); const T* h0_data = h0->data(); prev_hidden_data = reordered_h0_data; size_t sz = sizeof(T) * D; for (int i = 0; i < max_bs; ++i) { std::memcpy(reordered_h0_data, h0_data + seq_order[i] * D, sz); reordered_h0_data += D; } } else { // compute without h0 T* cur_in_data = batched_input_data; T* cur_out_data = batched_out_data; // W: {W_update, W_reset; W_state} for (int i = 0; i < max_bs; ++i) { // update gate act_gate(D, cur_in_data, cur_in_data); // state gate act_state(D, cur_in_data + D2, cur_in_data + D2); // out = a*b blas.VMUL(D, cur_in_data, cur_in_data + D2, cur_out_data); // add offset cur_in_data += D3; cur_out_data += D; } tstart = 1; prev_hidden_data = batched_out_data; } // Then start from next const T* wh_state_data = wh_data + D * D2; const auto& batch_starts = batched_lod[0]; const int max_seq_len = batch_starts.size() - 1; batched_input_data = batched_input_data + tstart * max_bs * D3; batched_out_data = batched_out_data + tstart * max_bs * D; for (int step = tstart; step < max_seq_len; ++step) { const int cur_bs = batch_starts[step + 1] - batch_starts[step]; // gemm prev * (Wu + Wr) blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D2, D, static_cast(1), prev_hidden_data, D, wh_data, D2, static_cast(1), batched_input_data, D3); T* cur_batched_data = batched_input_data; T* cur_prev_hidden_data = prev_hidden_data; for (int i = 0; i < cur_bs; ++i) { act_gate(D2, cur_batched_data, cur_batched_data); // rt = rt*ht_1 inplace result // TODO(TJ): try to save to cur out data // maybe get benifits avoiding cache miss in next gemm blas.VMUL(D, cur_prev_hidden_data, cur_batched_data + D, cur_batched_data + D); cur_batched_data += D3; cur_prev_hidden_data += D; } cur_batched_data = batched_input_data; blas.GEMM(CblasNoTrans, CblasNoTrans, cur_bs, D, D, static_cast(1), cur_batched_data + D, D3, wh_state_data, D, static_cast(1), cur_batched_data + D2, D3); T* cur_out_data = batched_out_data; cur_prev_hidden_data = prev_hidden_data; for (int i = 0; i < cur_bs; ++i) { // ht~ = act_state(...) act_state(D, cur_batched_data + D2, cur_batched_data + D2); // ht~~ = zt*ht~ inplace result blas.VMUL(D, cur_batched_data, cur_batched_data + D2, cur_batched_data + D2); // zt = 1 - zt inplace result bias_sub(D, static_cast(1), cur_batched_data, cur_batched_data); // zt = ht_1 * zt blas.VMUL(D, cur_prev_hidden_data, cur_batched_data, cur_batched_data); // out = zt + ht~~ blas.VADD(D, cur_batched_data, cur_batched_data + D2, cur_out_data); cur_batched_data += D3; cur_prev_hidden_data += D; cur_out_data += D; } prev_hidden_data = batched_out_data; batched_out_data = cur_out_data; batched_input_data = cur_batched_data; } math::Batch2LoDTensorFunctor to_seq; batched_out->set_lod(batched_lod); to_seq(dev_ctx, *batched_out, hidden_out); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker, paddle::framework::DefaultGradOpDescMaker); REGISTER_OP_CPU_KERNEL(fusion_gru, ops::FusionGRUKernel, ops::FusionGRUKernel);