ipu_compiler.cc 36.5 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

A
Allen Guo 已提交
15
#include "paddle/fluid/platform/device/ipu/ipu_compiler.h"
J
jianghaicheng 已提交
16

A
Allen Guo 已提交
17 18 19 20
#include <popart/adam.hpp>
#include <popart/adaptive.hpp>
#include <popart/optimizer.hpp>
#include <popart/sgd.hpp>
A
Allen Guo 已提交
21
#include <popart/voiddata.hpp>
R
Ruibiao Chen 已提交
22

J
jianghaicheng 已提交
23
#include "paddle/fluid/framework/ir/graph_helper.h"
24 25
#include "paddle/fluid/platform/device/ipu/ipu_names.h"
#include "paddle/fluid/platform/device/ipu/ipu_strategy.h"
A
Allen Guo 已提交
26
#include "paddle/fluid/platform/device/ipu/ipu_utils.h"
A
Allen Guo 已提交
27
#include "paddle/utils/blank.h"
J
jianghaicheng 已提交
28 29 30 31 32

namespace paddle {
namespace platform {
namespace ipu {

33 34
namespace {

35
struct CustomOpAttrVisitor {
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  CustomOpAttrVisitor(std::map<std::string, popart::any>* attr,
                      const std::string& attr_name)
      : attrs_(attr), attr_name_(attr_name) {}

  mutable std::map<std::string, popart::any>* attrs_;
  std::string attr_name_;

  void operator()(int v) const { attrs_->emplace(attr_name_, v); }
  void operator()(float v) const { attrs_->emplace(attr_name_, v); }
  void operator()(const std::string& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<int>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<float>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<std::string>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(bool v) const { attrs_->emplace(attr_name_, v); }
  void operator()(const std::vector<bool>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(BlockDesc* desc) const {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method for `BlockDesc` type when extracting "
        "custom operator attributes."));
  }
  void operator()(const std::vector<BlockDesc*>& v) const {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method for `BlockDesc` type when extracting  "
        "custom operator attributes."));
  }
  void operator()(int64_t v) const { attrs_->emplace(attr_name_, v); }
  void operator()(const std::vector<int64_t>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<double>& v) const {
    attrs_->emplace(attr_name_, v);
  }
R
Ruibiao Chen 已提交
78
  void operator()(paddle::blank) const {
79
    PADDLE_THROW(platform::errors::Unavailable(
R
Ruibiao Chen 已提交
80
        "Unsupported calling method for `paddle::blank` type when extracting "
81 82 83 84
        "custom operator attributes."));
  }
};

85
struct ConstantOpAttrVisitor {
86 87 88 89 90 91 92 93 94 95 96 97
  ConstantOpAttrVisitor(framework::LoDTensor* tensor, VarType::Type dtype)
      : tensor_(tensor), dtype_(dtype) {}

  framework::LoDTensor* tensor_;
  VarType::Type dtype_;

  void operator()(const std::vector<int>& vec) const {
    framework::TensorFromVector<int>(vec, tensor_);
  }
  void operator()(const std::vector<float>& vec) const {
    if (dtype_ == VarType::FP16) {
      std::vector<float16> vec_fp16;
98 99 100
      std::transform(vec.begin(),
                     vec.end(),
                     std::back_inserter(vec_fp16),
101 102 103 104 105 106 107 108 109 110 111 112 113
                     [](float f) -> float16 { return float16(f); });
      framework::TensorFromVector<float16>(vec_fp16, tensor_);
    } else {
      framework::TensorFromVector<float>(vec, tensor_);
    }
  }
  void operator()(const std::vector<bool>& vec) const {
    framework::TensorFromVector<bool>(vec, tensor_);
  }
  void operator()(const std::vector<int64_t>& vec) const {
    framework::TensorFromVector<int64_t>(vec, tensor_);
  }
  void operator()(const std::vector<double>& vec) const {
114 115 116 117 118 119 120
    // popart do not support float64 constant
    std::vector<float> vec_fp32;
    std::transform(vec.begin(),
                   vec.end(),
                   std::back_inserter(vec_fp32),
                   [](double f) -> float { return static_cast<float>(f); });
    framework::TensorFromVector<float>(vec_fp32, tensor_);
121 122 123 124 125 126 127 128 129 130 131 132
  }
#define RAISE_ERROR \
  PADDLE_THROW(     \
      platform::errors::InvalidArgument("Constant value must be a vector"))
  void operator()(int v) const { RAISE_ERROR; }
  void operator()(float v) const { RAISE_ERROR; }
  void operator()(const std::string& v) const { RAISE_ERROR; }
  void operator()(const std::vector<std::string>& v) const { RAISE_ERROR; }
  void operator()(bool v) const { RAISE_ERROR; }
  void operator()(BlockDesc* desc) const { RAISE_ERROR; }
  void operator()(const std::vector<BlockDesc*>& v) const { RAISE_ERROR; }
  void operator()(int64_t v) const { RAISE_ERROR; }
R
Ruibiao Chen 已提交
133
  void operator()(paddle::blank) const { RAISE_ERROR; }
134 135 136
#undef RAISE_ERROR
};

A
Allen Guo 已提交
137 138
popart::AdamMode AdamModeFromStr(const std::string& str,
                                 const bool& use_no_bias_optimizer) {
A
Allen Guo 已提交
139
  if (str == "adam") {
A
Allen Guo 已提交
140 141 142 143
    if (!use_no_bias_optimizer)
      return popart::AdamMode::Adam;
    else
      return popart::AdamMode::AdamNoBias;
A
Allen Guo 已提交
144 145 146
  } else if (str == "adamax") {
    return popart::AdamMode::AdaMax;
  } else if (str == "lamb") {
A
Allen Guo 已提交
147 148 149 150
    if (!use_no_bias_optimizer)
      return popart::AdamMode::Lamb;
    else
      return popart::AdamMode::LambNoBias;
A
Allen Guo 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Uknown AdamMode: %s, AdamMode must be one of these values: adam, "
        "adamax or lamb",
        str));
  }
}

popart::AdaptiveMode AdaptiveModeFromStr(const std::string& str) {
  if (str == "adadelta") {
    return popart::AdaptiveMode::AdaDelta;
  } else if (str == "adagrad") {
    return popart::AdaptiveMode::AdaGrad;
  } else if (str == "rmsprop") {
    return popart::AdaptiveMode::RMSProp;
  } else if (str == "centered_rmsprop") {
    return popart::AdaptiveMode::CenteredRMSProp;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Uknown AdaptiveMode: %s, AdaptiveMode must be one of these values: "
        "adadelta, adagrad, rmsprop or centered_rmsprop",
        str));
  }
}

popart::WeightDecayMode WeightDecayModeFromStr(const std::string& str) {
  if (str == "decay") {
    return popart::WeightDecayMode::Decay;
  } else if (str == "l2_regularization") {
    return popart::WeightDecayMode::L2Regularization;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Uknown WeightDecayMode: %s, WeightDecayMode must be decay or "
        "l2_regularization",
        str));
  }
}

A
Allen Guo 已提交
189 190 191 192 193 194 195 196 197 198 199
popart::DataType DataTypeFromStr(const std::string& str) {
  if (str == "FLOAT") {
    return popart::DataType::FLOAT;
  } else if (str == "FLOAT16") {
    return popart::DataType::FLOAT16;
  } else {
    PADDLE_THROW(
        platform::errors::Unimplemented("Unsupported DataType: %s", str));
  }
}

J
jianghaicheng 已提交
200
template <typename T>
A
Allen Guo 已提交
201
T GetAttrAllowNull(std::string attr, OpDesc* op_desc) {
J
jianghaicheng 已提交
202
  if (op_desc->HasAttr(attr)) {
R
Ruibiao Chen 已提交
203
    return PADDLE_GET_CONST(T, op_desc->GetAttr(attr));
J
jianghaicheng 已提交
204 205 206 207 208 209
  } else {
    return {};
  }
}

template <typename T>
A
Allen Guo 已提交
210
nonstd::optional<T> GetOptAttrAllowNull(std::string attr, OpDesc* op_desc) {
J
jianghaicheng 已提交
211
  if (op_desc->HasAttr(attr)) {
R
Ruibiao Chen 已提交
212
    return PADDLE_GET_CONST(T, op_desc->GetAttr(attr));
J
jianghaicheng 已提交
213 214 215 216 217
  } else {
    return {};
  }
}

A
Allen Guo 已提交
218 219 220
template <typename TI, typename TO>
TO GetCastSigAttrAllowNull(std::string attr, OpDesc* op_desc) {
  if (op_desc->HasAttr(attr)) {
R
Ruibiao Chen 已提交
221
    auto x = PADDLE_GET_CONST(TI, op_desc->GetAttr(attr));
A
Allen Guo 已提交
222 223 224 225 226 227
    return static_cast<TO>(x);
  } else {
    return {};
  }
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
// Helper for adding namescope info
struct NameScopeHelper {
  NameScopeHelper(const OpDesc* op, popart::Builder* builder);

  ~NameScopeHelper() {
    if (pushed_) {
      builder_->popNameScope();
    }
  }

  bool pushed_ = false;
  popart::Builder* builder_;
};

NameScopeHelper::NameScopeHelper(const OpDesc* op, popart::Builder* builder)
    : builder_(builder) {
R
Ruibiao Chen 已提交
244
  auto op_namescope = PADDLE_GET_CONST(std::string, op->GetAttr(sOpNamescope));
245 246 247 248 249 250 251 252 253 254 255
  if (op_namescope.empty() || op_namescope == "/") {
    return;
  }
  op_namescope.pop_back();
  op_namescope.erase(op_namescope.begin());
  builder->pushNameScope(op_namescope);
  pushed_ = true;
}

}  // namespace

A
Allen Guo 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268
GraphHelper::GraphHelper(const Graph* g) {
  graph = g;
  sorted_ops = framework::ir::TopologySortOperations(*g);
  for (auto* node : g->Nodes()) {
    nodes_id_map[node->id()] = node;
    if (node->IsVar()) {
      vars_name_map[node->Name()] = node;
      sorted_vars_id.push_back(node->id());
    }
  }
  std::sort(sorted_vars_id.begin(), sorted_vars_id.end());
}

A
Allen Guo 已提交
269 270 271 272 273
Compiler::Compiler() { RegisterOpFunc(); }

Compiler::~Compiler() {
  builder_.reset();
  resources_.reset();
J
jianghaicheng 已提交
274 275
}

A
Allen Guo 已提交
276
void Compiler::Prepare(const Graph* graph) {
A
Allen Guo 已提交
277 278
  builder_ = popart::Builder::create();
  resources_ = std::make_unique<CompilerResources>();
A
Allen Guo 已提交
279
  graph_helper_ = std::make_unique<GraphHelper>(graph);
A
Allen Guo 已提交
280 281 282 283 284 285 286 287 288 289 290
  // Set the flag of set_amp_for_all_
  for (auto* node : graph_helper_->sorted_ops) {
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    if (op_type == "popart_matmul") {
      if (op_desc->HasAttr(sAvailMemAttribute)) {
        set_amp_for_all_ = false;
        return;
      }
    }
  }
A
Allen Guo 已提交
291
}
J
jianghaicheng 已提交
292 293 294 295

void Compiler::RegisterOpFunc() {
  VLOG(10) << "enter Compiler::RegisterOpFunc";
#define INT_VEC std::vector<std::int64_t>
A
Allen Guo 已提交
296
#define INT32_VEC std::vector<std::int32_t>
J
jianghaicheng 已提交
297 298 299
#define FLOAT_VEC std::vector<float>
#define FLOAT float
#define INT std::int64_t
A
Allen Guo 已提交
300
#define INT32 std::int32_t
J
jianghaicheng 已提交
301 302
#define BOOL bool
#define STRING std::string
A
Allen Guo 已提交
303
#define STRING_VEC std::vector<std::string>
J
jianghaicheng 已提交
304 305 306 307
#define NONE

#define ARG(Type, Name) , GetAttrAllowNull<Type>(#Name, op_desc)
#define OPT_ARG(Type, Name) , GetOptAttrAllowNull<Type>(#Name, op_desc)
A
Allen Guo 已提交
308
#define SIG_ARG(TI, TO, Name) , GetCastSigAttrAllowNull<TI, TO>(#Name, op_desc)
J
jianghaicheng 已提交
309 310 311 312 313 314 315
#define POPART_CONST_ARG(Name) , const PopartConstant& Name
#define HOST_SIDE_CONST_ARG(Name) , const HostSideConstant& Name
#define POPART_ATTRIB_VEC_ARG(Name)
#define BODY_ARG(Name) NONE

  name_function_ = {
#define OP_DECL(FuncName, OnnxImpl, Args)                     \
A
Allen Guo 已提交
316
  {#FuncName, [&](OpDesc* op_desc) {                          \
J
jianghaicheng 已提交
317 318 319 320 321 322
     auto op_type = op_desc->Type();                          \
     VLOG(10) << "build op:" << op_type << " args " << #Args; \
     auto inputs = GetOpInputs(op_desc);                      \
     auto debug_context = BuildDebugContext(op_desc);         \
     auto aiGraphcoreOpset = builder_->aiGraphcoreOpset1();   \
     auto aiOnnxOpset = builder_->aiOnnxOpset11();            \
A
Allen Guo 已提交
323
     NameScopeHelper ns_helper(op_desc, builder_.get());      \
J
jianghaicheng 已提交
324
     auto output_ids = OnnxImpl(inputs Args, debug_context);  \
A
Allen Guo 已提交
325
     PostLower(output_ids, op_desc);                          \
J
jianghaicheng 已提交
326
   }},  // NOLINT
A
Allen Guo 已提交
327 328
#include "paddle/fluid/platform/device/ipu/supported_ops_autogen.h"
#include "paddle/fluid/platform/device/ipu/supported_ops_custom.h"
J
jianghaicheng 已提交
329 330 331 332 333 334 335
  };

#undef OP_DECL
#undef BODY_ARG
#undef POPART_ATTRIB_VEC_ARG
#undef HOST_SIDE_CONST_ARG
#undef POPART_CONST_ARG
A
Allen Guo 已提交
336
#undef SIG_ARG
J
jianghaicheng 已提交
337 338 339 340 341 342
#undef OPT_ARG
#undef ARG
#undef NONE
#undef STRING_VEC
#undef STRING
#undef BOOL
A
Allen Guo 已提交
343
#undef INT32
J
jianghaicheng 已提交
344 345 346
#undef INT
#undef FLOAT
#undef FLOAT_VEC
A
Allen Guo 已提交
347
#undef INT32_VEC
J
jianghaicheng 已提交
348 349 350
#undef INT_VEC
}

A
Allen Guo 已提交
351
void Compiler::InitInputs(const std::vector<std::string>& feed_list) {
J
jianghaicheng 已提交
352
  for (const auto& feed_name : feed_list) {
A
Allen Guo 已提交
353 354 355
    auto* node = graph_helper_->vars_name_map[feed_name];
    auto* var_desc = node->Var();
    VLOG(10) << "feed_name= " << var_desc->Name();
356
    auto data_type = VarType2PopartDType(var_desc->GetDataType());
A
Allen Guo 已提交
357 358 359 360 361 362 363
    popart::TensorInfo input_info{data_type, var_desc->GetShape()};
    VLOG(10) << "popart input_info = " << input_info;
    popart::TensorId tensor_id =
        builder_->addInputTensor(input_info, feed_name);
    VLOG(10) << "popart input tensor id = " << tensor_id;
    resources_->inputs.push_back(tensor_id);
    resources_->tensors.emplace(var_desc->Name(), tensor_id);
J
jianghaicheng 已提交
364 365 366 367 368
  }
}

void Compiler::InitOutputs(const std::vector<std::string>& fetch_list) {
  for (const auto& fetch_name : fetch_list) {
A
Allen Guo 已提交
369 370
    auto tensor = resources_->tensors.find(fetch_name);
    PADDLE_ENFORCE_NE(
371 372
        tensor,
        resources_->tensors.end(),
A
Allen Guo 已提交
373 374 375
        platform::errors::NotFound(
            "Output tensor %s is not found, please check the model.",
            fetch_name));
J
jianghaicheng 已提交
376 377 378
    VLOG(10) << "fetch_name= " << fetch_name;
    VLOG(10) << "popart output tensor id = " << tensor->second;
    builder_->addOutputTensor(tensor->second);
A
Allen Guo 已提交
379 380 381 382
    resources_->outputs.push_back(tensor->second);
  }
}

A
Allen Guo 已提交
383
void Compiler::LowerConstants(const Scope* scope) {
A
Allen Guo 已提交
384 385
  auto& kid_scope = scope->NewScope();
  VLOG(10) << "enter Compiler::LowerConstants";
A
Allen Guo 已提交
386
  for (auto* node : graph_helper_->sorted_ops) {
A
Allen Guo 已提交
387 388 389 390
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    if (op_type == "popart_constant") {
      auto shape =
R
Ruibiao Chen 已提交
391 392
          PADDLE_GET_CONST(std::vector<int64_t>, op_desc->GetAttr("dims"));
      auto dtype_ = PADDLE_GET_CONST(int, op_desc->GetAttr("dtype"));
393 394 395
      auto dtype = PopartDType2VarType(
          OnnxDType2PopartType(static_cast<ONNXDataType>(dtype_)));
      auto tensor_name = GetOpOutputs(op_desc).front();
A
Allen Guo 已提交
396 397 398 399 400
      auto* var = kid_scope.Var(tensor_name);
      VLOG(10) << "lowering constant: " << tensor_name;
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      ConstantOpAttrVisitor visitor(tensor, dtype);
      auto value = op_desc->GetAttr("value");
R
Ruibiao Chen 已提交
401
      paddle::visit(visitor, value);
402
      auto ddim = phi::make_ddim(shape);
A
Allen Guo 已提交
403 404 405
      tensor->Resize(ddim);

      auto const_data = std::unique_ptr<popart::ConstVoidData>();
406
      popart::TensorInfo tensor_info(PhiDType2PopartDType(tensor->dtype()),
A
Allen Guo 已提交
407
                                     shape);
A
Allen Guo 已提交
408
      const_data.reset(new popart::ConstVoidData(tensor->data(), tensor_info));
A
Allen Guo 已提交
409
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
410
      popart::TensorId result = builder_->aiOnnxOpset11().constant(*const_data);
A
Allen Guo 已提交
411
      PostLower(result, op_desc);
A
Allen Guo 已提交
412 413
      resources_->tensors.emplace(tensor_name, result);
    }
J
jianghaicheng 已提交
414
  }
A
Allen Guo 已提交
415
  VLOG(10) << "leave Compiler::LowerConstants";
J
jianghaicheng 已提交
416 417
}

A
Allen Guo 已提交
418
void Compiler::LowerWeights(const Scope* scope) {
A
Allen Guo 已提交
419
  VLOG(10) << "enter Compiler::LowerWeights";
A
Allen Guo 已提交
420
  // At this step, the graph doesn't contains optimizer related states
A
Allen Guo 已提交
421 422
  for (auto id : graph_helper_->sorted_vars_id) {
    auto* node = graph_helper_->nodes_id_map[id];
A
Allen Guo 已提交
423 424
    // Weights are var node and Persistable
    if (node->IsVar() && !node->IsCtrlVar() && node->Var() &&
425
        node->Var()->Persistable() && node->inputs.empty()) {
A
Allen Guo 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438
      // Weights are Parameter in training mode
      if (ipu_strategy_->is_training && !node->Var()->IsParameter()) {
        continue;
      }
      auto var_name = node->Var()->Name();
      // Some op has same input and output tensor, like batchnorm
      if (resources_->tensors.count(var_name) != 0) {
        VLOG(10) << "found existed one, skip lowering Weight: " << var_name;
        continue;
      }
      VLOG(10) << "lowering weight: " << var_name;
      auto var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
439 440 441
          var,
          platform::errors::NotFound("Tensor %s is not found in the scope",
                                     var_name));
A
Allen Guo 已提交
442
      auto tensor = var->Get<framework::LoDTensor>();
443
      auto dtype = PhiDType2PopartDType(tensor.dtype());
A
Allen Guo 已提交
444 445 446 447
      auto shape = std::vector<int64_t>();
      for (size_t i = 0; i < tensor.dims().size(); ++i) {
        shape.push_back(tensor.dims().at(i));
      }
A
Allen Guo 已提交
448

A
Allen Guo 已提交
449 450 451 452 453 454 455 456 457
      popart::TensorInfo tensor_info(dtype, shape);
      popart::ConstVoidData const_data{tensor.data(), tensor_info};
      if (!node->outputs.empty()) {
        auto op_node = node->outputs[0];
        NameScopeHelper ns_helper(op_node->Op(), builder_.get());
        popart::TensorId result =
            builder_->addInitializedInputTensor(const_data, var_name);
        resources_->tensors.emplace(var_name, result);
        resources_->weights.push_back(var_name);
J
jianghaicheng 已提交
458 459 460
      }
    }
  }
A
Allen Guo 已提交
461 462 463
  VLOG(10) << "leave Compiler::LowerWeights";
}

A
Allen Guo 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476
void Compiler::LowerBody() {
  VLOG(10) << "enter Compiler::LowerBody";
  for (auto* node : graph_helper_->sorted_ops) {
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    VLOG(10) << "lowering op: " << op_type;

    if (op_type == "popart_constant") {
      // pass
    } else if (op_type == "popart_optimizer") {
      // pass
    } else if (op_type == "popart_checkpointoutput") {
      auto inputs = GetOpInputs(op_desc);
A
Allen Guo 已提交
477
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
478
      auto output_ids = builder_->checkpointOutput(inputs);
A
Allen Guo 已提交
479
      PostLower(output_ids, op_desc);
A
Allen Guo 已提交
480 481 482 483 484 485 486
    } else if (op_type == "popart_custom_op") {
      auto inputs = GetOpInputs(op_desc);
      auto outputs = GetOpOutputs(op_desc);
      auto debug_context = BuildDebugContext(op_desc);
      auto attributes = std::map<std::string, popart::any>{};
      for (auto& attr : op_desc->GetAttrMap()) {
        CustomOpAttrVisitor visitor(&attributes, attr.first);
R
Ruibiao Chen 已提交
487
        paddle::visit(visitor, attr.second);
A
Allen Guo 已提交
488 489
      }
      auto __op_type =
R
Ruibiao Chen 已提交
490
          PADDLE_GET_CONST(std::string, op_desc->GetAttr("__op_type"));
A
Allen Guo 已提交
491 492
      VLOG(10) << "Build graph from custom op: " << __op_type;
      auto it = custom_ops_.find(__op_type);
A
Allen Guo 已提交
493
      NameScopeHelper ns_helper(op_desc, builder_.get());
494 495 496 497 498 499
      auto output_ids = builder_->customOp(it->second.popart_op,
                                           it->second.popart_op.version,
                                           inputs,
                                           outputs.size(),
                                           attributes,
                                           debug_context);
A
Allen Guo 已提交
500
      PostLower(output_ids, op_desc);
A
Allen Guo 已提交
501 502 503 504
    } else if (op_type == "popart_printtensor") {
      auto inputs = GetOpInputs(op_desc);
      auto debug_context = BuildDebugContext(op_desc);
      auto print_gradient =
R
Ruibiao Chen 已提交
505 506
          PADDLE_GET_CONST(int64_t, op_desc->GetAttr("print_gradient"));
      auto title = PADDLE_GET_CONST(std::string, op_desc->GetAttr("title"));
A
Allen Guo 已提交
507
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
508 509
      auto output_ids = builder_->aiGraphcoreOpset1().printtensor(
          inputs, print_gradient, debug_context, title);
A
Allen Guo 已提交
510
      PostLower(output_ids, op_desc);
A
Allen Guo 已提交
511 512 513 514 515 516 517 518 519 520
    } else {
      auto itr = name_function_.find(op_type);
      if (itr != name_function_.end()) {
        itr->second(node->Op());
      } else {
        PADDLE_THROW(platform::errors::NotFound(
            "%s is not registered, please check for unsupported operators for "
            "running on IPU",
            op_type));
      }
A
Allen Guo 已提交
521
    }
A
Allen Guo 已提交
522 523 524
  }
  VLOG(10) << "leave Compiler::LowerBody";
}
A
Allen Guo 已提交
525

A
Allen Guo 已提交
526 527
void Compiler::LowerOptimizer(const Scope* scope) {
  for (auto* node : graph_helper_->sorted_ops) {
A
Allen Guo 已提交
528 529 530 531
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    if (op_type == "popart_optimizer") {
      auto raw_type =
R
Ruibiao Chen 已提交
532
          PADDLE_GET_CONST(std::string, op_desc->GetAttr("raw_type"));
A
Allen Guo 已提交
533 534
      resources_->optimizer_type = raw_type;
      resources_->with_lr_sched =
R
Ruibiao Chen 已提交
535
          PADDLE_GET_CONST(bool, op_desc->GetAttr("with_lr_sched"));
536
      if (ipu_strategy_->is_dynamic) {
A
Allen Guo 已提交
537 538
        // loss_var in dy2static is set by identity_loss. And lr is
        // passed by ipu_strategy.
539
        resources_->lr = ipu_strategy_->lr;
A
Allen Guo 已提交
540
      } else {
A
Allen Guo 已提交
541
        auto loss_var =
R
Ruibiao Chen 已提交
542
            PADDLE_GET_CONST(std::string, op_desc->GetAttr("loss_var"));
A
Allen Guo 已提交
543 544 545
        resources_->loss_var = resources_->tensors[loss_var];
        if (op_desc->HasAttr("lr_var")) {
          auto lr_var =
R
Ruibiao Chen 已提交
546
              PADDLE_GET_CONST(std::string, op_desc->GetAttr("lr_var"));
A
Allen Guo 已提交
547 548 549 550 551 552 553
          resources_->lr_var = lr_var;
          resources_->lr = GetSingleVarFromScope<float>(scope, lr_var);
        } else {
          // adadelta has no lr
          resources_->lr = 0.01f;
          resources_->with_lr_sched = false;
        }
A
Allen Guo 已提交
554 555
      }
      VLOG(10) << "Set initial lr: " << resources_->lr;
A
Allen Guo 已提交
556 557

      // Get the type of optimizer
R
Ruibiao Chen 已提交
558
      auto type = PADDLE_GET_CONST(std::string, op_desc->GetAttr("type"));
A
Allen Guo 已提交
559
      // Set weight decay by tensor names for Lamb
R
Ruibiao Chen 已提交
560
      auto weight_decay_vars = PADDLE_GET_CONST(
A
Allen Guo 已提交
561
          std::vector<std::string>, op_desc->GetAttr("weight_decay_vars"));
R
Ruibiao Chen 已提交
562
      auto weight_decay_values = PADDLE_GET_CONST(
A
Allen Guo 已提交
563 564 565 566
          std::vector<float>, op_desc->GetAttr("weight_decay_values"));
      // Get the maximum permissible value for gradient clipping
      std::vector<popart::ClipNormSettings> clip_norm_settings = {};
      if (op_desc->HasAttr("clip_norm")) {
R
Ruibiao Chen 已提交
567
        auto clip_norm = PADDLE_GET_CONST(float, op_desc->GetAttr("clip_norm"));
A
Allen Guo 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580
        clip_norm_settings.push_back(
            popart::ClipNormSettings::clipAllWeights(clip_norm));
        VLOG(10) << "Set the global gradient clipping with the maximum "
                    "permissible value: "
                 << clip_norm;
      }

      // Values from ipu_strategy
      auto loss_scaling = ipu_strategy_->loss_scaling;
      auto accl1_type = DataTypeFromStr(ipu_strategy_->accl1_type);
      auto accl2_type = DataTypeFromStr(ipu_strategy_->accl2_type);
      auto accl3_type = DataTypeFromStr(ipu_strategy_->accl3_type);

A
Allen Guo 已提交
581 582
      if (type == "sgd") {
        auto weight_decay =
R
Ruibiao Chen 已提交
583 584
            PADDLE_GET_CONST(float, op_desc->GetAttr("weight_decay"));
        auto momentum = PADDLE_GET_CONST(float, op_desc->GetAttr("momentum"));
A
Allen Guo 已提交
585 586 587
        resources_->optimizer_fn = [=](float lr) {
          return std::make_unique<popart::SGD>(
              popart::OptimizerValue(lr, false),
A
Allen Guo 已提交
588
              popart::OptimizerValue(weight_decay, false),
A
Allen Guo 已提交
589 590 591
              popart::OptimizerValue(momentum, true),
              popart::SGD::getUnsetDampening(),
              popart::SGD::getUnsetVelocityScaling(),
592 593
              popart::OptimizerValue(loss_scaling, true),
              clip_norm_settings);
A
Allen Guo 已提交
594
        };
A
Allen Guo 已提交
595 596 597
        resources_->eval_optimizer = std::make_unique<popart::SGD>(
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(0.0, false),
598 599
            popart::OptimizerValue(0.0, true),
            popart::SGD::getUnsetDampening(),
A
Allen Guo 已提交
600
            popart::SGD::getUnsetVelocityScaling(),
601 602
            popart::OptimizerValue(loss_scaling, true),
            clip_norm_settings);
A
Allen Guo 已提交
603 604
      } else if (type == "adam") {
        auto weight_decay =
R
Ruibiao Chen 已提交
605 606 607 608
            PADDLE_GET_CONST(float, op_desc->GetAttr("weight_decay"));
        auto beta1 = PADDLE_GET_CONST(float, op_desc->GetAttr("beta1"));
        auto beta2 = PADDLE_GET_CONST(float, op_desc->GetAttr("beta2"));
        auto eps = PADDLE_GET_CONST(float, op_desc->GetAttr("eps"));
A
Allen Guo 已提交
609 610 611
        auto mwn = ipu_strategy_->max_weight_norm;
        VLOG(10) << "set max_weight_norm: " << mwn;
        auto adam_mode_ =
R
Ruibiao Chen 已提交
612
            PADDLE_GET_CONST(std::string, op_desc->GetAttr("adam_mode"));
A
Allen Guo 已提交
613 614 615
        auto adam_mode =
            AdamModeFromStr(adam_mode_, ipu_strategy_->use_no_bias_optimizer);
        auto weight_decay_mode_ = ipu_strategy_->weight_decay_mode;
A
Allen Guo 已提交
616
        auto scaled_optimizer_state_ = ipu_strategy_->scaled_optimizer_state;
A
Allen Guo 已提交
617
        if (weight_decay_mode_.empty()) {
R
Ruibiao Chen 已提交
618
          weight_decay_mode_ = PADDLE_GET_CONST(
A
Allen Guo 已提交
619 620
              std::string, op_desc->GetAttr("weight_decay_mode"));
        }
A
Allen Guo 已提交
621 622
        auto weight_decay_mode = WeightDecayModeFromStr(weight_decay_mode_);
        resources_->optimizer_fn = [=](float lr) {
A
Allen Guo 已提交
623 624 625 626 627 628 629 630 631
          if (adam_mode == popart::AdamMode::Lamb ||
              adam_mode == popart::AdamMode::LambNoBias) {
            const std::map<std::string, std::pair<float, bool>>
                optimizer_value = {{"defaultLearningRate", {lr, false}},
                                   {"defaultBeta1", {beta1, false}},
                                   {"defaultBeta2", {beta2, false}},
                                   {"defaultEps", {eps, true}},
                                   {"lossScaling", {loss_scaling, true}},
                                   {"defaultMaxWeightNorm", {mwn, true}}};
632 633 634 635 636 637 638 639 640
            auto optimizer_instance =
                std::make_unique<popart::Adam>(optimizer_value,
                                               adam_mode,
                                               weight_decay_mode,
                                               popart::DataType::UNDEFINED,
                                               accl1_type,
                                               accl2_type,
                                               clip_norm_settings,
                                               scaled_optimizer_state_);
A
Allen Guo 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
            for (int i = 0; i < weight_decay_vars.size(); i++) {
              optimizer_instance->insertSpecific(
                  weight_decay_vars[i],
                  {{"weightDecay", {weight_decay_values[i], false}}});
              VLOG(10) << "Set Tensor " << weight_decay_vars[i]
                       << " weight decay as " << weight_decay_values[i];
            }
            return optimizer_instance;
          } else {
            return std::make_unique<popart::Adam>(
                popart::OptimizerValue(lr, false),
                popart::OptimizerValue(weight_decay, false),
                popart::OptimizerValue(beta1, false),
                popart::OptimizerValue(beta2, false),
                popart::OptimizerValue(eps, true),
                popart::OptimizerValue(loss_scaling, true),
657 658 659 660 661 662 663 664
                popart::OptimizerValue(mwn, true),
                adam_mode,
                weight_decay_mode,
                popart::DataType::UNDEFINED,
                accl1_type,
                accl2_type,
                clip_norm_settings,
                scaled_optimizer_state_);
A
Allen Guo 已提交
665 666
          }
        };
A
Allen Guo 已提交
667
        if (adam_mode == popart::AdamMode::Lamb) {
A
Allen Guo 已提交
668 669 670 671 672 673 674
          const std::map<std::string, std::pair<float, bool>> optimizer_value =
              {{"defaultLearningRate", {0.0, false}},
               {"defaultBeta1", {beta1, false}},
               {"defaultBeta2", {beta2, false}},
               {"defaultEps", {eps, true}},
               {"lossScaling", {loss_scaling, true}},
               {"defaultMaxWeightNorm", {mwn, true}}};
675 676 677 678 679 680 681 682 683
          auto eval_optimizer =
              std::make_unique<popart::Adam>(optimizer_value,
                                             adam_mode,
                                             weight_decay_mode,
                                             popart::DataType::UNDEFINED,
                                             popart::DataType::FLOAT,
                                             popart::DataType::FLOAT,
                                             clip_norm_settings,
                                             scaled_optimizer_state_);
A
Allen Guo 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696
          for (int i = 0; i < weight_decay_vars.size(); i++) {
            eval_optimizer->insertSpecific(weight_decay_vars[i],
                                           {{"weightDecay", {0.0, false}}});
          }
          resources_->eval_optimizer = std::move(eval_optimizer);
        } else if (adam_mode == popart::AdamMode::LambNoBias) {
          const std::map<std::string, std::pair<float, bool>> optimizer_value =
              {{"defaultLearningRate", {0.0, false}},
               {"defaultBeta1", {1.0, false}},
               {"defaultBeta2", {1.0, false}},
               {"defaultEps", {eps, true}},
               {"lossScaling", {loss_scaling, true}},
               {"defaultMaxWeightNorm", {mwn, true}}};
697 698 699 700 701 702 703 704 705
          auto eval_optimizer =
              std::make_unique<popart::Adam>(optimizer_value,
                                             adam_mode,
                                             weight_decay_mode,
                                             popart::DataType::UNDEFINED,
                                             popart::DataType::FLOAT,
                                             popart::DataType::FLOAT,
                                             clip_norm_settings,
                                             scaled_optimizer_state_);
A
Allen Guo 已提交
706 707 708 709 710 711 712 713 714 715 716
          for (int i = 0; i < weight_decay_vars.size(); i++) {
            eval_optimizer->insertSpecific(weight_decay_vars[i],
                                           {{"weightDecay", {0.0, false}}});
          }
          resources_->eval_optimizer = std::move(eval_optimizer);
        } else {
          resources_->eval_optimizer = std::make_unique<popart::Adam>(
              popart::OptimizerValue(0.0, false),
              popart::OptimizerValue(0.0, false),
              popart::OptimizerValue(beta1, false),
              popart::OptimizerValue(beta2, false),
A
Allen Guo 已提交
717 718
              popart::OptimizerValue(eps, true),
              popart::OptimizerValue(loss_scaling, true),
719 720 721 722 723 724 725
              popart::OptimizerValue(mwn, true),
              adam_mode,
              weight_decay_mode,
              popart::DataType::UNDEFINED,
              popart::DataType::FLOAT,
              popart::DataType::FLOAT,
              clip_norm_settings,
A
Allen Guo 已提交
726
              scaled_optimizer_state_);
A
Allen Guo 已提交
727
        }
A
Allen Guo 已提交
728
      } else if (type == "adaptive") {
R
Ruibiao Chen 已提交
729 730 731
        auto alpha = PADDLE_GET_CONST(float, op_desc->GetAttr("alpha"));
        auto momentum = PADDLE_GET_CONST(float, op_desc->GetAttr("momentum"));
        auto eps = PADDLE_GET_CONST(float, op_desc->GetAttr("eps"));
A
Allen Guo 已提交
732
        auto weight_decay =
R
Ruibiao Chen 已提交
733
            PADDLE_GET_CONST(float, op_desc->GetAttr("weight_decay"));
A
Allen Guo 已提交
734
        auto adaptive_mode_ =
R
Ruibiao Chen 已提交
735
            PADDLE_GET_CONST(std::string, op_desc->GetAttr("adaptive_mode"));
A
Allen Guo 已提交
736
        auto adaptive_mode = AdaptiveModeFromStr(adaptive_mode_);
A
Allen Guo 已提交
737 738
        auto weight_decay_mode_ = ipu_strategy_->weight_decay_mode;
        if (weight_decay_mode_.empty()) {
R
Ruibiao Chen 已提交
739
          weight_decay_mode_ = PADDLE_GET_CONST(
A
Allen Guo 已提交
740 741
              std::string, op_desc->GetAttr("weight_decay_mode"));
        }
A
Allen Guo 已提交
742 743 744 745
        auto weight_decay_mode = WeightDecayModeFromStr(weight_decay_mode_);
        resources_->optimizer_fn = [=](float lr) {
          return std::make_unique<popart::Adaptive>(
              popart::OptimizerValue(lr, false),
A
Allen Guo 已提交
746
              popart::OptimizerValue(weight_decay, false),
A
Allen Guo 已提交
747 748 749
              popart::OptimizerValue(alpha, true),
              popart::OptimizerValue(momentum, true),
              popart::OptimizerValue(eps, true),
750 751 752 753 754 755 756
              popart::OptimizerValue(loss_scaling, true),
              adaptive_mode,
              weight_decay_mode,
              popart::DataType::UNDEFINED,
              accl1_type,
              accl2_type,
              accl3_type);
A
Allen Guo 已提交
757
        };
A
Allen Guo 已提交
758 759 760 761 762 763
        resources_->eval_optimizer = std::make_unique<popart::Adaptive>(
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(alpha, true),
            popart::OptimizerValue(momentum, true),
            popart::OptimizerValue(eps, true),
764 765 766 767 768 769
            popart::OptimizerValue(loss_scaling, true),
            adaptive_mode,
            weight_decay_mode,
            popart::DataType::UNDEFINED,
            popart::DataType::FLOAT,
            popart::DataType::FLOAT,
A
Allen Guo 已提交
770
            popart::DataType::UNDEFINED);
A
Allen Guo 已提交
771 772 773 774
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "optimizer %s is not implemented", type));
      }
A
Allen Guo 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787
    } else if (op_type == "popart_identity_loss") {
      auto outputs = op_desc->Outputs();
      PADDLE_ENFORCE_EQ(
          outputs.size(),
          1,
          platform::errors::InvalidArgument("Can only support one loss key"));
      auto losses = outputs.begin()->second;
      PADDLE_ENFORCE_EQ(
          losses.size(),
          1,
          platform::errors::InvalidArgument("Can only support one loss name"));
      auto loss_var = losses.front();
      resources_->loss_var = resources_->tensors[loss_var];
A
Allen Guo 已提交
788 789
    }
  }
J
jianghaicheng 已提交
790 791
}

A
Allen Guo 已提交
792 793 794 795 796
void Compiler::PostLower(const std::vector<std::string>& tensor_ids,
                         const OpDesc* op_desc) {
  // Set pipline
  // Due to the limitation of popart, if an op has multiple outputs,
  // pipline settings needs to be set at the same time
J
jianghaicheng 已提交
797 798 799
  auto tensor_ids_set =
      std::set<std::string>(tensor_ids.begin(), tensor_ids.end());
  if (op_desc->HasAttr(sIpuIndexAttr)) {
R
Ruibiao Chen 已提交
800
    auto ipu_index = PADDLE_GET_CONST(int, op_desc->GetAttr(sIpuIndexAttr));
J
jianghaicheng 已提交
801 802 803 804
    builder_->virtualGraph(tensor_ids_set, ipu_index);
    VLOG(10) << "set " << sIpuIndexAttr << " = " << ipu_index
             << " for op: " << op_desc->Type();
    if (op_desc->HasAttr(sIpuStageAttr)) {
R
Ruibiao Chen 已提交
805
      auto ipu_stage = PADDLE_GET_CONST(int, op_desc->GetAttr(sIpuStageAttr));
J
jianghaicheng 已提交
806
      builder_->pipelineStage(tensor_ids_set, ipu_stage);
A
Allen Guo 已提交
807
      VLOG(10) << "set " << sIpuStageAttr << " = " << ipu_stage
J
jianghaicheng 已提交
808 809 810
               << " for op: " << op_desc->Type();
    }
  }
811 812 813
  // Record output tensors
  auto pd_outs = GetOpOutputs(op_desc);
  PADDLE_ENFORCE_EQ(
814 815
      pd_outs.size(),
      tensor_ids.size(),
816 817 818 819
      platform::errors::Fatal("paddle and popart op have different outputs"));
  for (int i = 0; i < tensor_ids.size(); ++i) {
    resources_->tensors.emplace(pd_outs[i], tensor_ids[i]);
  }
A
Allen Guo 已提交
820 821 822
  for (auto& tensor_id : tensor_ids) {
    PostLower(tensor_id, op_desc, true);
  }
J
jianghaicheng 已提交
823 824
}

A
Allen Guo 已提交
825
void Compiler::PostLower(const std::string& tensor_id, const OpDesc* op_desc) {
826 827 828
  // Record output tensor
  auto pd_outs = GetOpOutputs(op_desc);
  PADDLE_ENFORCE_EQ(
829 830
      pd_outs.size(),
      1,
831 832
      platform::errors::Fatal("paddle and popart op have different outputs"));
  resources_->tensors.emplace(pd_outs[0], tensor_id);
A
Allen Guo 已提交
833 834
  PostLower(tensor_id, op_desc, false);
}
J
jianghaicheng 已提交
835

836 837
void Compiler::PostLower(const std::string& tensor_id,
                         const OpDesc* op_desc,
A
Allen Guo 已提交
838 839 840
                         bool skip_pipline) {
  // Set pipline
  if (!skip_pipline && op_desc->HasAttr(sIpuIndexAttr)) {
R
Ruibiao Chen 已提交
841
    auto ipu_index = PADDLE_GET_CONST(int, op_desc->GetAttr(sIpuIndexAttr));
J
jianghaicheng 已提交
842 843 844 845
    builder_->virtualGraph(tensor_id, ipu_index);
    VLOG(10) << "set " << sIpuIndexAttr << " = " << ipu_index
             << " for op: " << op_desc->Type();
    if (op_desc->HasAttr(sIpuStageAttr)) {
R
Ruibiao Chen 已提交
846
      auto ipu_stage = PADDLE_GET_CONST(int, op_desc->GetAttr(sIpuStageAttr));
J
jianghaicheng 已提交
847
      builder_->pipelineStage(tensor_id, ipu_stage);
A
Allen Guo 已提交
848
      VLOG(10) << "set " << sIpuStageAttr << " = " << ipu_stage
J
jianghaicheng 已提交
849 850 851
               << " for op: " << op_desc->Type();
    }
  }
A
Allen Guo 已提交
852
  // Set amp
A
Allen Guo 已提交
853
  if (op_desc->Type() == "popart_matmul") {
A
Allen Guo 已提交
854 855 856 857
    if (set_amp_for_all_) {
      auto amp = ipu_strategy_->available_memory_proportion;
      if (amp < 0.0f || amp > 1.0) {
        PADDLE_THROW(platform::errors::InvalidArgument(
A
Allen Guo 已提交
858 859
            "AvailableMemoryProportion %f is invalid, which should be in "
            "range [0.0, 1.0]",
A
Allen Guo 已提交
860 861 862 863 864 865 866
            amp));
      }
      if (amp > 0.0f) {
        builder_->setAvailableMemoryProportion(tensor_id, amp);
      }
    } else {
      if (op_desc->HasAttr(sAvailMemAttribute)) {
R
Ruibiao Chen 已提交
867 868
        auto amp =
            PADDLE_GET_CONST(float, op_desc->GetAttr(sAvailMemAttribute));
A
Allen Guo 已提交
869 870
        if (amp < 0.0f || amp > 1.0) {
          PADDLE_THROW(platform::errors::InvalidArgument(
A
Allen Guo 已提交
871 872
              "AvailableMemoryProportion %f is invalid, which should be in "
              "range [0.0, 1.0]",
A
Allen Guo 已提交
873 874 875 876 877 878 879 880
              amp));
        }
        if (amp > 0.0f) {
          builder_->setAvailableMemoryProportion(tensor_id, amp);
          VLOG(10) << "set available_memory_proportion for tensor: "
                   << tensor_id << " as " << amp;
        }
      }
A
Allen Guo 已提交
881
    }
A
Allen Guo 已提交
882
    // Set serialize matmul
A
Allen Guo 已提交
883 884
    if (op_desc->HasAttr(sMatmulSerializeFactor)) {
      auto factor =
R
Ruibiao Chen 已提交
885
          PADDLE_GET_CONST(int, op_desc->GetAttr(sMatmulSerializeFactor));
A
Allen Guo 已提交
886 887
      std::string mode = "output_channels";
      if (op_desc->HasAttr(sMatmulSerializeMode)) {
R
Ruibiao Chen 已提交
888 889
        mode = PADDLE_GET_CONST(std::string,
                                op_desc->GetAttr(sMatmulSerializeMode));
A
Allen Guo 已提交
890
      }
A
Allen Guo 已提交
891
      builder_->setSerializeMatMul({tensor_id}, mode, factor, true);
A
Allen Guo 已提交
892 893 894
    }
  }
}
J
jianghaicheng 已提交
895

A
Allen Guo 已提交
896 897 898 899 900 901 902 903
void Compiler::SetCustomOps(
    const std::vector<IpuCustomOpIdentifier>& custom_ops) {
  for (auto x : custom_ops) {
    custom_ops_.emplace(x.paddle_op, x);
  }
}

std::string Compiler::GetFP16ModelProto() {
J
jianghaicheng 已提交
904 905
  popart::GraphTransformer graph_transformer(builder_->getModelProto());
  graph_transformer.convertFloatsToHalfs();
A
Allen Guo 已提交
906
  return graph_transformer.getModelProto();
J
jianghaicheng 已提交
907 908
}

909
std::string Compiler::GetModelProto() { return builder_->getModelProto(); }
J
jianghaicheng 已提交
910 911 912 913 914 915 916 917 918 919 920 921

void Compiler::SaveModelProto(const std::string& path) {
  builder_->saveModelProto(path);
}

void Compiler::SaveModelProtoNoCheck(const std::string& path) {
  auto proto = GetModelProto();
  std::ofstream onnxfile(path, std::ios_base::binary);
  onnxfile.write(proto.data(), proto.size());
  onnxfile.close();
}

A
Allen Guo 已提交
922
std::vector<std::string> Compiler::GetOpInputs(const OpDesc* op) {
J
jianghaicheng 已提交
923 924 925
  auto ins = op->Input("__inputs__");
  std::vector<std::string> inputs;
  for (const auto& in : ins) {
A
Allen Guo 已提交
926 927
    if (resources_->tensors.find(in) != resources_->tensors.end()) {
      inputs.push_back(resources_->tensors[in]);
J
jianghaicheng 已提交
928 929 930 931 932 933 934
    } else {
      inputs.push_back(in);
    }
  }
  return inputs;
}

A
Allen Guo 已提交
935
const std::vector<std::string>& Compiler::GetOpOutputs(const OpDesc* op) {
J
jianghaicheng 已提交
936 937 938
  return op->Output("__outputs__");
}

A
Allen Guo 已提交
939
popart::DebugContext Compiler::BuildDebugContext(const OpDesc* op) {
J
jianghaicheng 已提交
940
  auto op_identify_id =
R
Ruibiao Chen 已提交
941
      PADDLE_GET_CONST(std::string, op->GetAttr(sOpIdentifyIdAttr));
J
jianghaicheng 已提交
942 943 944 945 946 947 948 949
  VLOG(10) << "op_identify_id of op: " << op->Type() << " is "
           << op_identify_id;
  return popart::DebugContext(op_identify_id);
}

}  // namespace ipu
}  // namespace platform
}  // namespace paddle