ipu_compiler.cc 14.9 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/platform/ipu/ipu_compiler.h"

#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/platform/ipu/ipu_utils.h"

namespace paddle {
namespace platform {
namespace ipu {

template <typename T>
T GetAttrAllowNull(std::string attr, framework::OpDesc* op_desc) {
  if (op_desc->HasAttr(attr)) {
    return BOOST_GET_CONST(T, op_desc->GetAttr(attr));
  } else {
    return {};
  }
}

template <typename T>
nonstd::optional<T> GetOptAttrAllowNull(std::string attr,
                                        framework::OpDesc* op_desc) {
  if (op_desc->HasAttr(attr)) {
    return BOOST_GET_CONST(T, op_desc->GetAttr(attr));
  } else {
    return {};
  }
}

Compiler::Compiler() {
  builder_ = popart::Builder::create();
  RegisterOpFunc();
}

Compiler::~Compiler() {}

void Compiler::RegisterOpFunc() {
  VLOG(10) << "enter Compiler::RegisterOpFunc";
#define INT_VEC std::vector<std::int64_t>
#define FLOAT_VEC std::vector<float>
#define FLOAT float
#define INT std::int64_t
#define BOOL bool
#define STRING std::string
#define STRING_VEC std::vector<std::string*>
#define NONE

#define ARG(Type, Name) , GetAttrAllowNull<Type>(#Name, op_desc)
#define OPT_ARG(Type, Name) , GetOptAttrAllowNull<Type>(#Name, op_desc)
#define POPART_CONST_ARG(Name) , const PopartConstant& Name
#define HOST_SIDE_CONST_ARG(Name) , const HostSideConstant& Name
#define POPART_ATTRIB_VEC_ARG(Name)
#define BODY_ARG(Name) NONE

  name_function_ = {
#define OP_DECL(FuncName, OnnxImpl, Args)                     \
  {#FuncName, [&](framework::OpDesc* op_desc) {               \
     auto op_type = op_desc->Type();                          \
     VLOG(10) << "build op:" << op_type << " args " << #Args; \
     auto inputs = GetOpInputs(op_desc);                      \
     auto output_names = GetOpOutputs(op_desc);               \
     auto debug_context = BuildDebugContext(op_desc);         \
     auto aiGraphcoreOpset = builder_->aiGraphcoreOpset1();   \
     auto aiOnnxOpset = builder_->aiOnnxOpset11();            \
     auto output_ids = OnnxImpl(inputs Args, debug_context);  \
     SetIpuIndexStage(output_ids, op_desc);                   \
     InsertTensors(output_names, output_ids);                 \
   }},  // NOLINT
#include "paddle/fluid/platform/ipu/supported_ops_autogen.h"
  };

#undef OP_DECL
#undef BODY_ARG
#undef POPART_ATTRIB_VEC_ARG
#undef HOST_SIDE_CONST_ARG
#undef POPART_CONST_ARG
#undef OPT_ARG
#undef ARG
#undef NONE
#undef STRING_VEC
#undef STRING
#undef BOOL
#undef INT
#undef FLOAT
#undef FLOAT_VEC
#undef INT_VEC
}

void Compiler::LowerBody(const framework::ir::Graph* graph) {
  VLOG(10) << "enter Compiler::LowerBody";
  auto nodes = framework::ir::TopologySortOperations(*graph);
  for (auto* node : nodes) {
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    VLOG(10) << "node->type: " << op_type;

    if (op_type == "popart_constant") {
      auto dims =
          BOOST_GET_CONST(std::vector<int64_t>, op_desc->GetAttr("dims"));
      auto dtype_ = BOOST_GET_CONST(int, op_desc->GetAttr("dtype"));
      auto dtype = OnnxDtype2PopartType(dtype_);
      popart::TensorInfo tensor_info{dtype, dims};
      auto value_attr = op_desc->GetAttr("value");
      auto const_data = std::unique_ptr<popart::ConstVoidData>{};
      switch (dtype) {
        case popart::DataType::FLOAT:
          const_data.reset(new popart::ConstVoidData(
              BOOST_GET_CONST(std::vector<float>, value_attr).data(),
              tensor_info));
          break;
        case popart::DataType::INT32:
          const_data.reset(new popart::ConstVoidData(
              BOOST_GET_CONST(std::vector<int>, value_attr).data(),
              tensor_info));
          break;
        case popart::DataType::DOUBLE:
          const_data.reset(new popart::ConstVoidData(
              BOOST_GET_CONST(std::vector<double>, value_attr).data(),
              tensor_info));
          break;
        case popart::DataType::INT64:
          const_data.reset(new popart::ConstVoidData(
              BOOST_GET_CONST(std::vector<int64_t>, value_attr).data(),
              tensor_info));
          break;
        default:
          PADDLE_THROW(platform::errors::Unimplemented(
              "The popart datatype is not supported, popart::DataType is %d",
              dtype));
      }
      popart::TensorId result = builder_->aiOnnxOpset11().constant(*const_data);
      SetIpuIndexStage(result, op_desc);
      InsertTensors(GetOpOutputs(op_desc), result);
    } else if (op_type == "popart_batchnormalization") {
      auto inputs = GetOpInputs(op_desc);
      auto outputs = GetOpOutputs(op_desc);
      auto num_outputs = outputs.size();
      auto epsilon = BOOST_GET_CONST(float, op_desc->GetAttr("epsilon"));
      auto momentum = BOOST_GET_CONST(float, op_desc->GetAttr("momentum"));
      auto result = builder_->aiOnnxOpset11().batchnormalization(
          inputs, num_outputs, epsilon, momentum);
      SetIpuIndexStage(result, op_desc);
      InsertTensors(GetOpOutputs(op_desc), result);
    } else if (op_type == "popart_nllloss") {
      auto inputs = GetOpInputs(op_desc);
      auto ignoreIndex = BOOST_GET_CONST(int, op_desc->GetAttr("ignoreIndex"));
      auto result = builder_->aiGraphcoreOpset1().nllloss(
          inputs, popart::ReductionType::NoReduction, ignoreIndex);
      SetIpuIndexStage(result, op_desc);
      InsertTensors(GetOpOutputs(op_desc), result);
    } else if (op_type == "popart_topk") {
      auto inputs = GetOpInputs(op_desc);
      auto outputs = GetOpOutputs(op_desc);
      int64_t axis = BOOST_GET_CONST(int64_t, op_desc->GetAttr("axis"));
      int sorted_INT32 = BOOST_GET_CONST(int, op_desc->GetAttr("sorted"));
      int64_t sorted = int64_t{sorted_INT32};

      auto aiOnnxOpset = builder_->aiOnnxOpset11();

      popart::ConvInputs result;
      if (inputs.size() == 2) {
        VLOG(10)
            << "[Compiler::LowerBody] size of inputs for <popart_topk> is 2";
        result = aiOnnxOpset.topk(inputs, axis, sorted);
      } else if (inputs.size() == 1) {
        VLOG(10)
            << "[Compiler::LowerBody] size of inputs for <popart_topk> is 1";
        int64_t k = BOOST_GET_CONST(int64_t, op_desc->GetAttr("k"));
        popart::TensorInfo kShape{"INT64", std::vector<int64_t>{1}};
        popart::ConstVoidData kData = {&k, kShape};
        auto K_t = aiOnnxOpset.constant(kData);
        result = aiOnnxOpset.topk({inputs[0], K_t}, axis, sorted);
      }
      result[1] = aiOnnxOpset.cast({result[1]}, "INT32");
      SetIpuIndexStage(result, op_desc);
      VLOG(10) << "[Compiler::LowerBody] output[1]: " << outputs[1];
      VLOG(10) << "[Compiler::LowerBody] output[1]: "
               << GetOpOutputs(op_desc)[1] << " -> " << result[1];
      tensors_.emplace(GetOpOutputs(op_desc)[1], result[1]);  // topk indices
      VLOG(10) << "[Compiler::LowerBody] output[0]: " << outputs[0];
      VLOG(10) << "[Compiler::LowerBody] output[0]: "
               << GetOpOutputs(op_desc)[0] << " -> " << result[0];
      tensors_.emplace(GetOpOutputs(op_desc)[0], result[0]);  // topk values
    } else {
      auto itr = name_function_.find(op_type);
      if (itr != name_function_.end()) {
        itr->second(node->Op());
      } else {
        PADDLE_THROW(platform::errors::NotFound(
            "Op %s is not registered in popart canonicalization", op_type));
      }
    }
  }
  VLOG(10) << "leave Compiler::LowerBody";
}

void Compiler::InitInputs(framework::ir::Graph* graph,
                          const std::vector<std::string>& feed_list) {
  for (const auto& feed_name : feed_list) {
    feed_list_.push_back(feed_name);
    for (const framework::ir::Node* n : graph->Nodes()) {
      if (n->IsVar()) {
        auto* var_desc = n->Var();
        if (feed_name == var_desc->Name()) {
          VLOG(10) << "feed_name= " << var_desc->Name();
          auto data_type = VarType2PopartType(var_desc->GetDataType());
          if (ipu_strategy_->enable_fp16) {
            data_type = popart::DataType::FLOAT16;
          }
          popart::TensorInfo input_info{data_type, var_desc->GetShape()};
          VLOG(10) << "popart input_info = " << input_info;
          popart::TensorId tensor_id =
              builder_->addInputTensor(input_info, feed_name);
          VLOG(10) << "popart input tensor id = " << tensor_id;
          inputs_.push_back(tensor_id);
          tensors_.emplace(var_desc->Name(), tensor_id);
        }
      }
    }
  }
}

void Compiler::InitOutputs(const std::vector<std::string>& fetch_list) {
  for (const auto& fetch_name : fetch_list) {
    fetch_list_.push_back(fetch_name);
    auto tensor = tensors_.find(fetch_name);
    PADDLE_ENFORCE_NE(tensor, tensors_.end(),
                      platform::errors::NotFound(
                          "output tensor %s does not exist.", fetch_name));
    VLOG(10) << "fetch_name= " << fetch_name;
    VLOG(10) << "popart output tensor id = " << tensor->second;
    builder_->addOutputTensor(tensor->second);
    outputs_.push_back(tensor->second);
  }
}

void Compiler::LowerWeights(const framework::ir::Graph* graph,
                            const framework::Scope* scope_) {
  PADDLE_ENFORCE_NOT_NULL(scope_,
                          platform::errors::PreconditionNotMet(
                              "You should call set_scope before LowerWeights"));
  // at this step, the graph doesn't contains optimizer related states
  for (const auto* node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      if (node->Var()->Persistable() && node->inputs.empty()) {
        auto var_name = node->Var()->Name();
        // workround: https://github.com/graphcore/Paddle/issues/151
        if (tensors_.count(var_name) != 0) {
          continue;
        }

        auto var = scope_->FindVar(var_name);
        if (var) {
          auto tensor = var->Get<framework::LoDTensor>();
          auto dtype = VarType2PopartType(tensor.type());
          auto shape = std::vector<int64_t>();
          for (size_t i = 0; i < tensor.dims().size(); ++i) {
            shape.push_back(tensor.dims().at(i));
          }
          popart::TensorInfo tensor_info(dtype, shape);
274
          popart::ConstVoidData const_data{tensor.data(), tensor_info};
J
jianghaicheng 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
          popart::TensorId result =
              builder_->addInitializedInputTensor(const_data, var_name);
          tensors_.emplace(var_name, result);
          weights_.push_back(result);
        }
      }
    }
  }
}

void Compiler::InsertTensors(const std::vector<std::string>& output_names,
                             const std::vector<std::string>& tensor_ids) {
  PADDLE_ENFORCE_EQ(output_names.size(), tensor_ids.size(),
                    platform::errors::Fatal("InsertTensors size mismatch"));
  for (int i = 0; i < tensor_ids.size(); i++) {
    std::string tensor_id = tensor_ids[i];
    tensors_.emplace(output_names[i], tensor_ids[i]);
  }
}

void Compiler::InsertTensors(const std::vector<std::string>& output_names,
                             const std::string& tensor_id) {
  PADDLE_ENFORCE_EQ(output_names.size(), 1,
                    platform::errors::Fatal("InsertTensors size mismatch"));
  tensors_.emplace(output_names[0], tensor_id);
}

void Compiler::SetIpuIndexStage(const std::vector<std::string>& tensor_ids,
                                const framework::OpDesc* op_desc) {
  VLOG(10) << "enter Compiler::SetIpuIndexStage";
  auto tensor_ids_set =
      std::set<std::string>(tensor_ids.begin(), tensor_ids.end());

  if (op_desc->HasAttr(sIpuIndexAttr)) {
    auto ipu_index = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuIndexAttr));
    builder_->virtualGraph(tensor_ids_set, ipu_index);
    VLOG(10) << "set " << sIpuIndexAttr << " = " << ipu_index
             << " for op: " << op_desc->Type();
    if (op_desc->HasAttr(sIpuStageAttr)) {
      auto ipu_stage = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuStageAttr));
      builder_->pipelineStage(tensor_ids_set, ipu_stage);
      VLOG(10) << "set " << sIpuStageAttr << "= " << ipu_stage
               << " for op: " << op_desc->Type();
    }
  }
  VLOG(10) << "leave Compiler::SetIpuIndexStage";
}

void Compiler::SetIpuIndexStage(const std::string& tensor_id,
                                const framework::OpDesc* op_desc) {
  VLOG(10) << "enter Compiler::SetIpuIndexStage";

  if (op_desc->HasAttr(sIpuIndexAttr)) {
    auto ipu_index = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuIndexAttr));
    builder_->virtualGraph(tensor_id, ipu_index);
    VLOG(10) << "set " << sIpuIndexAttr << " = " << ipu_index
             << " for op: " << op_desc->Type();
    if (op_desc->HasAttr(sIpuStageAttr)) {
      auto ipu_stage = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuStageAttr));
      builder_->pipelineStage(tensor_id, ipu_stage);
      VLOG(10) << "set " << sIpuStageAttr << "= " << ipu_stage
               << " for op: " << op_desc->Type();
    }
  }
  VLOG(10) << "leave Compiler::SetIpuIndexStage";
}

std::vector<popart::TensorId>& Compiler::GetWeights() { return weights_; }

// convertFloatsToHalfs
void Compiler::ConvertProtoToFp16() {
  popart::GraphTransformer graph_transformer(builder_->getModelProto());
  graph_transformer.convertFloatsToHalfs();
  converted_proto_ = graph_transformer.getModelProto();
}

std::string Compiler::GetModelProto() {
  if (converted_proto_.length()) {
    return converted_proto_;
  }
  return builder_->getModelProto();
}

void Compiler::SaveModelProto(const std::string& path) {
  builder_->saveModelProto(path);
}

void Compiler::SaveModelProtoNoCheck(const std::string& path) {
  auto proto = GetModelProto();
  std::ofstream onnxfile(path, std::ios_base::binary);
  onnxfile.write(proto.data(), proto.size());
  onnxfile.close();
}

std::vector<std::string> Compiler::GetOpInputs(const framework::OpDesc* op) {
  auto ins = op->Input("__inputs__");
  std::vector<std::string> inputs;
  for (const auto& in : ins) {
    if (tensors_.find(in) != tensors_.end()) {
      inputs.push_back(tensors_[in]);
    } else {
      inputs.push_back(in);
    }
  }
  return inputs;
}

const std::vector<std::string>& Compiler::GetOpOutputs(
    const framework::OpDesc* op) {
  return op->Output("__outputs__");
}

popart::DebugContext Compiler::BuildDebugContext(const framework::OpDesc* op) {
  auto op_identify_id =
      BOOST_GET_CONST(std::string, op->GetAttr(sOpIdentifyIdAttr));
  VLOG(10) << "op_identify_id of op: " << op->Type() << " is "
           << op_identify_id;
  return popart::DebugContext(op_identify_id);
}

}  // namespace ipu
}  // namespace platform
}  // namespace paddle