ipu_compiler.cc 35.5 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

A
Allen Guo 已提交
15
#include "paddle/fluid/platform/device/ipu/ipu_compiler.h"
J
jianghaicheng 已提交
16

A
Allen Guo 已提交
17 18 19 20
#include <popart/adam.hpp>
#include <popart/adaptive.hpp>
#include <popart/optimizer.hpp>
#include <popart/sgd.hpp>
A
Allen Guo 已提交
21

R
Ruibiao Chen 已提交
22 23
#include "boost/blank.hpp"

J
jianghaicheng 已提交
24
#include "paddle/fluid/framework/ir/graph_helper.h"
25 26
#include "paddle/fluid/platform/device/ipu/ipu_names.h"
#include "paddle/fluid/platform/device/ipu/ipu_strategy.h"
A
Allen Guo 已提交
27
#include "paddle/fluid/platform/device/ipu/ipu_utils.h"
J
jianghaicheng 已提交
28 29 30 31 32

namespace paddle {
namespace platform {
namespace ipu {

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
namespace {

struct CustomOpAttrVisitor : public boost::static_visitor<void> {
  CustomOpAttrVisitor(std::map<std::string, popart::any>* attr,
                      const std::string& attr_name)
      : attrs_(attr), attr_name_(attr_name) {}

  mutable std::map<std::string, popart::any>* attrs_;
  std::string attr_name_;

  void operator()(int v) const { attrs_->emplace(attr_name_, v); }
  void operator()(float v) const { attrs_->emplace(attr_name_, v); }
  void operator()(const std::string& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<int>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<float>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<std::string>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(bool v) const { attrs_->emplace(attr_name_, v); }
  void operator()(const std::vector<bool>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(BlockDesc* desc) const {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method for `BlockDesc` type when extracting "
        "custom operator attributes."));
  }
  void operator()(const std::vector<BlockDesc*>& v) const {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method for `BlockDesc` type when extracting  "
        "custom operator attributes."));
  }
  void operator()(int64_t v) const { attrs_->emplace(attr_name_, v); }
  void operator()(const std::vector<int64_t>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(const std::vector<double>& v) const {
    attrs_->emplace(attr_name_, v);
  }
  void operator()(boost::blank) const {
    PADDLE_THROW(platform::errors::Unavailable(
        "Unsupported calling method for `boost::blank` type when extracting "
        "custom operator attributes."));
  }
};

struct ConstantOpAttrVisitor : public boost::static_visitor<void> {
  ConstantOpAttrVisitor(framework::LoDTensor* tensor, VarType::Type dtype)
      : tensor_(tensor), dtype_(dtype) {}

  framework::LoDTensor* tensor_;
  VarType::Type dtype_;

  void operator()(const std::vector<int>& vec) const {
    framework::TensorFromVector<int>(vec, tensor_);
  }
  void operator()(const std::vector<float>& vec) const {
    if (dtype_ == VarType::FP16) {
      std::vector<float16> vec_fp16;
98 99 100
      std::transform(vec.begin(),
                     vec.end(),
                     std::back_inserter(vec_fp16),
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
                     [](float f) -> float16 { return float16(f); });
      framework::TensorFromVector<float16>(vec_fp16, tensor_);
    } else {
      framework::TensorFromVector<float>(vec, tensor_);
    }
  }
  void operator()(const std::vector<bool>& vec) const {
    framework::TensorFromVector<bool>(vec, tensor_);
  }
  void operator()(const std::vector<int64_t>& vec) const {
    framework::TensorFromVector<int64_t>(vec, tensor_);
  }
  void operator()(const std::vector<double>& vec) const {
    framework::TensorFromVector<double>(vec, tensor_);
  }
#define RAISE_ERROR \
  PADDLE_THROW(     \
      platform::errors::InvalidArgument("Constant value must be a vector"))
  void operator()(int v) const { RAISE_ERROR; }
  void operator()(float v) const { RAISE_ERROR; }
  void operator()(const std::string& v) const { RAISE_ERROR; }
  void operator()(const std::vector<std::string>& v) const { RAISE_ERROR; }
  void operator()(bool v) const { RAISE_ERROR; }
  void operator()(BlockDesc* desc) const { RAISE_ERROR; }
  void operator()(const std::vector<BlockDesc*>& v) const { RAISE_ERROR; }
  void operator()(int64_t v) const { RAISE_ERROR; }
  void operator()(boost::blank) const { RAISE_ERROR; }
#undef RAISE_ERROR
};

A
Allen Guo 已提交
131 132
popart::AdamMode AdamModeFromStr(const std::string& str,
                                 const bool& use_no_bias_optimizer) {
A
Allen Guo 已提交
133
  if (str == "adam") {
A
Allen Guo 已提交
134 135 136 137
    if (!use_no_bias_optimizer)
      return popart::AdamMode::Adam;
    else
      return popart::AdamMode::AdamNoBias;
A
Allen Guo 已提交
138 139 140
  } else if (str == "adamax") {
    return popart::AdamMode::AdaMax;
  } else if (str == "lamb") {
A
Allen Guo 已提交
141 142 143 144
    if (!use_no_bias_optimizer)
      return popart::AdamMode::Lamb;
    else
      return popart::AdamMode::LambNoBias;
A
Allen Guo 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Uknown AdamMode: %s, AdamMode must be one of these values: adam, "
        "adamax or lamb",
        str));
  }
}

popart::AdaptiveMode AdaptiveModeFromStr(const std::string& str) {
  if (str == "adadelta") {
    return popart::AdaptiveMode::AdaDelta;
  } else if (str == "adagrad") {
    return popart::AdaptiveMode::AdaGrad;
  } else if (str == "rmsprop") {
    return popart::AdaptiveMode::RMSProp;
  } else if (str == "centered_rmsprop") {
    return popart::AdaptiveMode::CenteredRMSProp;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Uknown AdaptiveMode: %s, AdaptiveMode must be one of these values: "
        "adadelta, adagrad, rmsprop or centered_rmsprop",
        str));
  }
}

popart::WeightDecayMode WeightDecayModeFromStr(const std::string& str) {
  if (str == "decay") {
    return popart::WeightDecayMode::Decay;
  } else if (str == "l2_regularization") {
    return popart::WeightDecayMode::L2Regularization;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Uknown WeightDecayMode: %s, WeightDecayMode must be decay or "
        "l2_regularization",
        str));
  }
}

A
Allen Guo 已提交
183 184 185 186 187 188 189 190 191 192 193
popart::DataType DataTypeFromStr(const std::string& str) {
  if (str == "FLOAT") {
    return popart::DataType::FLOAT;
  } else if (str == "FLOAT16") {
    return popart::DataType::FLOAT16;
  } else {
    PADDLE_THROW(
        platform::errors::Unimplemented("Unsupported DataType: %s", str));
  }
}

J
jianghaicheng 已提交
194
template <typename T>
A
Allen Guo 已提交
195
T GetAttrAllowNull(std::string attr, OpDesc* op_desc) {
J
jianghaicheng 已提交
196 197 198 199 200 201 202 203
  if (op_desc->HasAttr(attr)) {
    return BOOST_GET_CONST(T, op_desc->GetAttr(attr));
  } else {
    return {};
  }
}

template <typename T>
A
Allen Guo 已提交
204
nonstd::optional<T> GetOptAttrAllowNull(std::string attr, OpDesc* op_desc) {
J
jianghaicheng 已提交
205 206 207 208 209 210 211
  if (op_desc->HasAttr(attr)) {
    return BOOST_GET_CONST(T, op_desc->GetAttr(attr));
  } else {
    return {};
  }
}

A
Allen Guo 已提交
212 213 214 215 216 217 218 219 220 221
template <typename TI, typename TO>
TO GetCastSigAttrAllowNull(std::string attr, OpDesc* op_desc) {
  if (op_desc->HasAttr(attr)) {
    auto x = BOOST_GET_CONST(TI, op_desc->GetAttr(attr));
    return static_cast<TO>(x);
  } else {
    return {};
  }
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
// Helper for adding namescope info
struct NameScopeHelper {
  NameScopeHelper(const OpDesc* op, popart::Builder* builder);

  ~NameScopeHelper() {
    if (pushed_) {
      builder_->popNameScope();
    }
  }

  bool pushed_ = false;
  popart::Builder* builder_;
};

NameScopeHelper::NameScopeHelper(const OpDesc* op, popart::Builder* builder)
    : builder_(builder) {
  auto op_namescope = BOOST_GET_CONST(std::string, op->GetAttr(sOpNamescope));
  if (op_namescope.empty() || op_namescope == "/") {
    return;
  }
  op_namescope.pop_back();
  op_namescope.erase(op_namescope.begin());
  builder->pushNameScope(op_namescope);
  pushed_ = true;
}

}  // namespace

A
Allen Guo 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262
GraphHelper::GraphHelper(const Graph* g) {
  graph = g;
  sorted_ops = framework::ir::TopologySortOperations(*g);
  for (auto* node : g->Nodes()) {
    nodes_id_map[node->id()] = node;
    if (node->IsVar()) {
      vars_name_map[node->Name()] = node;
      sorted_vars_id.push_back(node->id());
    }
  }
  std::sort(sorted_vars_id.begin(), sorted_vars_id.end());
}

A
Allen Guo 已提交
263 264 265 266 267
Compiler::Compiler() { RegisterOpFunc(); }

Compiler::~Compiler() {
  builder_.reset();
  resources_.reset();
J
jianghaicheng 已提交
268 269
}

A
Allen Guo 已提交
270
void Compiler::Prepare(const Graph* graph) {
A
Allen Guo 已提交
271 272
  builder_ = popart::Builder::create();
  resources_ = std::make_unique<CompilerResources>();
A
Allen Guo 已提交
273
  graph_helper_ = std::make_unique<GraphHelper>(graph);
A
Allen Guo 已提交
274 275 276 277 278 279 280 281 282 283 284
  // Set the flag of set_amp_for_all_
  for (auto* node : graph_helper_->sorted_ops) {
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    if (op_type == "popart_matmul") {
      if (op_desc->HasAttr(sAvailMemAttribute)) {
        set_amp_for_all_ = false;
        return;
      }
    }
  }
A
Allen Guo 已提交
285
}
J
jianghaicheng 已提交
286 287 288 289

void Compiler::RegisterOpFunc() {
  VLOG(10) << "enter Compiler::RegisterOpFunc";
#define INT_VEC std::vector<std::int64_t>
A
Allen Guo 已提交
290
#define INT32_VEC std::vector<std::int32_t>
J
jianghaicheng 已提交
291 292 293
#define FLOAT_VEC std::vector<float>
#define FLOAT float
#define INT std::int64_t
A
Allen Guo 已提交
294
#define INT32 std::int32_t
J
jianghaicheng 已提交
295 296 297 298 299 300 301
#define BOOL bool
#define STRING std::string
#define STRING_VEC std::vector<std::string*>
#define NONE

#define ARG(Type, Name) , GetAttrAllowNull<Type>(#Name, op_desc)
#define OPT_ARG(Type, Name) , GetOptAttrAllowNull<Type>(#Name, op_desc)
A
Allen Guo 已提交
302
#define SIG_ARG(TI, TO, Name) , GetCastSigAttrAllowNull<TI, TO>(#Name, op_desc)
J
jianghaicheng 已提交
303 304 305 306 307 308 309
#define POPART_CONST_ARG(Name) , const PopartConstant& Name
#define HOST_SIDE_CONST_ARG(Name) , const HostSideConstant& Name
#define POPART_ATTRIB_VEC_ARG(Name)
#define BODY_ARG(Name) NONE

  name_function_ = {
#define OP_DECL(FuncName, OnnxImpl, Args)                     \
A
Allen Guo 已提交
310
  {#FuncName, [&](OpDesc* op_desc) {                          \
J
jianghaicheng 已提交
311 312 313 314 315 316
     auto op_type = op_desc->Type();                          \
     VLOG(10) << "build op:" << op_type << " args " << #Args; \
     auto inputs = GetOpInputs(op_desc);                      \
     auto debug_context = BuildDebugContext(op_desc);         \
     auto aiGraphcoreOpset = builder_->aiGraphcoreOpset1();   \
     auto aiOnnxOpset = builder_->aiOnnxOpset11();            \
A
Allen Guo 已提交
317
     NameScopeHelper ns_helper(op_desc, builder_.get());      \
J
jianghaicheng 已提交
318
     auto output_ids = OnnxImpl(inputs Args, debug_context);  \
A
Allen Guo 已提交
319
     PostLower(output_ids, op_desc);                          \
J
jianghaicheng 已提交
320
   }},  // NOLINT
A
Allen Guo 已提交
321 322
#include "paddle/fluid/platform/device/ipu/supported_ops_autogen.h"
#include "paddle/fluid/platform/device/ipu/supported_ops_custom.h"
J
jianghaicheng 已提交
323 324 325 326 327 328 329
  };

#undef OP_DECL
#undef BODY_ARG
#undef POPART_ATTRIB_VEC_ARG
#undef HOST_SIDE_CONST_ARG
#undef POPART_CONST_ARG
A
Allen Guo 已提交
330
#undef SIG_ARG
J
jianghaicheng 已提交
331 332 333 334 335 336
#undef OPT_ARG
#undef ARG
#undef NONE
#undef STRING_VEC
#undef STRING
#undef BOOL
A
Allen Guo 已提交
337
#undef INT32
J
jianghaicheng 已提交
338 339 340
#undef INT
#undef FLOAT
#undef FLOAT_VEC
A
Allen Guo 已提交
341
#undef INT32_VEC
J
jianghaicheng 已提交
342 343 344
#undef INT_VEC
}

A
Allen Guo 已提交
345
void Compiler::InitInputs(const std::vector<std::string>& feed_list) {
J
jianghaicheng 已提交
346
  for (const auto& feed_name : feed_list) {
A
Allen Guo 已提交
347 348 349
    auto* node = graph_helper_->vars_name_map[feed_name];
    auto* var_desc = node->Var();
    VLOG(10) << "feed_name= " << var_desc->Name();
350
    auto data_type = VarType2PopartDType(var_desc->GetDataType());
A
Allen Guo 已提交
351 352 353 354 355 356 357
    popart::TensorInfo input_info{data_type, var_desc->GetShape()};
    VLOG(10) << "popart input_info = " << input_info;
    popart::TensorId tensor_id =
        builder_->addInputTensor(input_info, feed_name);
    VLOG(10) << "popart input tensor id = " << tensor_id;
    resources_->inputs.push_back(tensor_id);
    resources_->tensors.emplace(var_desc->Name(), tensor_id);
J
jianghaicheng 已提交
358 359 360 361 362
  }
}

void Compiler::InitOutputs(const std::vector<std::string>& fetch_list) {
  for (const auto& fetch_name : fetch_list) {
A
Allen Guo 已提交
363 364
    auto tensor = resources_->tensors.find(fetch_name);
    PADDLE_ENFORCE_NE(
365 366
        tensor,
        resources_->tensors.end(),
A
Allen Guo 已提交
367 368 369
        platform::errors::NotFound(
            "Output tensor %s is not found, please check the model.",
            fetch_name));
J
jianghaicheng 已提交
370 371 372
    VLOG(10) << "fetch_name= " << fetch_name;
    VLOG(10) << "popart output tensor id = " << tensor->second;
    builder_->addOutputTensor(tensor->second);
A
Allen Guo 已提交
373 374 375 376
    resources_->outputs.push_back(tensor->second);
  }
}

A
Allen Guo 已提交
377
void Compiler::LowerConstants(const Scope* scope) {
A
Allen Guo 已提交
378 379
  auto& kid_scope = scope->NewScope();
  VLOG(10) << "enter Compiler::LowerConstants";
A
Allen Guo 已提交
380
  for (auto* node : graph_helper_->sorted_ops) {
A
Allen Guo 已提交
381 382 383 384 385 386
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    if (op_type == "popart_constant") {
      auto shape =
          BOOST_GET_CONST(std::vector<int64_t>, op_desc->GetAttr("dims"));
      auto dtype_ = BOOST_GET_CONST(int, op_desc->GetAttr("dtype"));
387 388 389
      auto dtype = PopartDType2VarType(
          OnnxDType2PopartType(static_cast<ONNXDataType>(dtype_)));
      auto tensor_name = GetOpOutputs(op_desc).front();
A
Allen Guo 已提交
390 391 392 393 394
      auto* var = kid_scope.Var(tensor_name);
      VLOG(10) << "lowering constant: " << tensor_name;
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      ConstantOpAttrVisitor visitor(tensor, dtype);
      auto value = op_desc->GetAttr("value");
R
Ruibiao Chen 已提交
395
      paddle::visit(visitor, value);
396
      auto ddim = phi::make_ddim(shape);
A
Allen Guo 已提交
397 398 399
      tensor->Resize(ddim);

      auto const_data = std::unique_ptr<popart::ConstVoidData>();
400
      popart::TensorInfo tensor_info(PhiDType2PopartDType(tensor->dtype()),
A
Allen Guo 已提交
401
                                     shape);
A
Allen Guo 已提交
402
      const_data.reset(new popart::ConstVoidData(tensor->data(), tensor_info));
A
Allen Guo 已提交
403
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
404
      popart::TensorId result = builder_->aiOnnxOpset11().constant(*const_data);
A
Allen Guo 已提交
405
      PostLower(result, op_desc);
A
Allen Guo 已提交
406 407
      resources_->tensors.emplace(tensor_name, result);
    }
J
jianghaicheng 已提交
408
  }
A
Allen Guo 已提交
409
  VLOG(10) << "leave Compiler::LowerConstants";
J
jianghaicheng 已提交
410 411
}

A
Allen Guo 已提交
412
void Compiler::LowerWeights(const Scope* scope) {
A
Allen Guo 已提交
413
  VLOG(10) << "enter Compiler::LowerWeights";
A
Allen Guo 已提交
414
  // At this step, the graph doesn't contains optimizer related states
A
Allen Guo 已提交
415 416
  for (auto id : graph_helper_->sorted_vars_id) {
    auto* node = graph_helper_->nodes_id_map[id];
A
Allen Guo 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    // Weights are var node and Persistable
    if (node->IsVar() && !node->IsCtrlVar() && node->Var() &&
        node->Var()->Persistable()) {
      // Weights are Parameter in training mode
      if (ipu_strategy_->is_training && !node->Var()->IsParameter()) {
        continue;
      }
      auto var_name = node->Var()->Name();
      // Some op has same input and output tensor, like batchnorm
      if (resources_->tensors.count(var_name) != 0) {
        VLOG(10) << "found existed one, skip lowering Weight: " << var_name;
        continue;
      }
      VLOG(10) << "lowering weight: " << var_name;
      auto var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
433 434 435
          var,
          platform::errors::NotFound("Tensor %s is not found in the scope",
                                     var_name));
A
Allen Guo 已提交
436
      auto tensor = var->Get<framework::LoDTensor>();
437
      auto dtype = PhiDType2PopartDType(tensor.dtype());
A
Allen Guo 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450
      auto shape = std::vector<int64_t>();
      for (size_t i = 0; i < tensor.dims().size(); ++i) {
        shape.push_back(tensor.dims().at(i));
      }
      popart::TensorInfo tensor_info(dtype, shape);
      popart::ConstVoidData const_data{tensor.data(), tensor_info};
      if (!node->outputs.empty()) {
        auto op_node = node->outputs[0];
        NameScopeHelper ns_helper(op_node->Op(), builder_.get());
        popart::TensorId result =
            builder_->addInitializedInputTensor(const_data, var_name);
        resources_->tensors.emplace(var_name, result);
        resources_->weights.push_back(var_name);
J
jianghaicheng 已提交
451 452 453
      }
    }
  }
A
Allen Guo 已提交
454 455 456
  VLOG(10) << "leave Compiler::LowerWeights";
}

A
Allen Guo 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469
void Compiler::LowerBody() {
  VLOG(10) << "enter Compiler::LowerBody";
  for (auto* node : graph_helper_->sorted_ops) {
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    VLOG(10) << "lowering op: " << op_type;

    if (op_type == "popart_constant") {
      // pass
    } else if (op_type == "popart_optimizer") {
      // pass
    } else if (op_type == "popart_checkpointoutput") {
      auto inputs = GetOpInputs(op_desc);
A
Allen Guo 已提交
470
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
471
      auto output_ids = builder_->checkpointOutput(inputs);
A
Allen Guo 已提交
472
      PostLower(output_ids, op_desc);
A
Allen Guo 已提交
473 474 475 476 477 478 479
    } else if (op_type == "popart_custom_op") {
      auto inputs = GetOpInputs(op_desc);
      auto outputs = GetOpOutputs(op_desc);
      auto debug_context = BuildDebugContext(op_desc);
      auto attributes = std::map<std::string, popart::any>{};
      for (auto& attr : op_desc->GetAttrMap()) {
        CustomOpAttrVisitor visitor(&attributes, attr.first);
R
Ruibiao Chen 已提交
480
        paddle::visit(visitor, attr.second);
A
Allen Guo 已提交
481 482 483 484 485
      }
      auto __op_type =
          BOOST_GET_CONST(std::string, op_desc->GetAttr("__op_type"));
      VLOG(10) << "Build graph from custom op: " << __op_type;
      auto it = custom_ops_.find(__op_type);
A
Allen Guo 已提交
486
      NameScopeHelper ns_helper(op_desc, builder_.get());
487 488 489 490 491 492
      auto output_ids = builder_->customOp(it->second.popart_op,
                                           it->second.popart_op.version,
                                           inputs,
                                           outputs.size(),
                                           attributes,
                                           debug_context);
A
Allen Guo 已提交
493
      PostLower(output_ids, op_desc);
A
Allen Guo 已提交
494 495 496 497 498 499
    } else if (op_type == "popart_printtensor") {
      auto inputs = GetOpInputs(op_desc);
      auto debug_context = BuildDebugContext(op_desc);
      auto print_gradient =
          BOOST_GET_CONST(int64_t, op_desc->GetAttr("print_gradient"));
      auto title = BOOST_GET_CONST(std::string, op_desc->GetAttr("title"));
A
Allen Guo 已提交
500
      NameScopeHelper ns_helper(op_desc, builder_.get());
A
Allen Guo 已提交
501 502
      auto output_ids = builder_->aiGraphcoreOpset1().printtensor(
          inputs, print_gradient, debug_context, title);
A
Allen Guo 已提交
503
      PostLower(output_ids, op_desc);
A
Allen Guo 已提交
504 505 506 507 508 509 510 511 512 513
    } else {
      auto itr = name_function_.find(op_type);
      if (itr != name_function_.end()) {
        itr->second(node->Op());
      } else {
        PADDLE_THROW(platform::errors::NotFound(
            "%s is not registered, please check for unsupported operators for "
            "running on IPU",
            op_type));
      }
A
Allen Guo 已提交
514
    }
A
Allen Guo 已提交
515 516 517
  }
  VLOG(10) << "leave Compiler::LowerBody";
}
A
Allen Guo 已提交
518

A
Allen Guo 已提交
519 520
void Compiler::LowerOptimizer(const Scope* scope) {
  for (auto* node : graph_helper_->sorted_ops) {
A
Allen Guo 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    auto* op_desc = node->Op();
    auto op_type = op_desc->Type();
    if (op_type == "popart_optimizer") {
      auto raw_type =
          BOOST_GET_CONST(std::string, op_desc->GetAttr("raw_type"));
      resources_->optimizer_type = raw_type;
      auto loss_var =
          BOOST_GET_CONST(std::string, op_desc->GetAttr("loss_var"));
      resources_->loss_var = resources_->tensors[loss_var];
      resources_->with_lr_sched =
          BOOST_GET_CONST(bool, op_desc->GetAttr("with_lr_sched"));
      if (op_desc->HasAttr("lr_var")) {
        auto lr_var = BOOST_GET_CONST(std::string, op_desc->GetAttr("lr_var"));
        resources_->lr_var = lr_var;
        resources_->lr = GetSingleVarFromScope<float>(scope, lr_var);
      } else {
        // adadelta has no lr
        resources_->lr = 0.01f;
        resources_->with_lr_sched = false;
      }
      VLOG(10) << "Set initial lr: " << resources_->lr;
A
Allen Guo 已提交
542 543

      // Get the type of optimizer
A
Allen Guo 已提交
544
      auto type = BOOST_GET_CONST(std::string, op_desc->GetAttr("type"));
A
Allen Guo 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
      // Set weight decay by tensor names for Lamb
      auto weight_decay_vars = BOOST_GET_CONST(
          std::vector<std::string>, op_desc->GetAttr("weight_decay_vars"));
      auto weight_decay_values = BOOST_GET_CONST(
          std::vector<float>, op_desc->GetAttr("weight_decay_values"));
      // Get the maximum permissible value for gradient clipping
      std::vector<popart::ClipNormSettings> clip_norm_settings = {};
      if (op_desc->HasAttr("clip_norm")) {
        auto clip_norm = BOOST_GET_CONST(float, op_desc->GetAttr("clip_norm"));
        clip_norm_settings.push_back(
            popart::ClipNormSettings::clipAllWeights(clip_norm));
        VLOG(10) << "Set the global gradient clipping with the maximum "
                    "permissible value: "
                 << clip_norm;
      }

      // Values from ipu_strategy
      auto loss_scaling = ipu_strategy_->loss_scaling;
      auto accl1_type = DataTypeFromStr(ipu_strategy_->accl1_type);
      auto accl2_type = DataTypeFromStr(ipu_strategy_->accl2_type);
      auto accl3_type = DataTypeFromStr(ipu_strategy_->accl3_type);

A
Allen Guo 已提交
567 568 569 570 571 572 573
      if (type == "sgd") {
        auto weight_decay =
            BOOST_GET_CONST(float, op_desc->GetAttr("weight_decay"));
        auto momentum = BOOST_GET_CONST(float, op_desc->GetAttr("momentum"));
        resources_->optimizer_fn = [=](float lr) {
          return std::make_unique<popart::SGD>(
              popart::OptimizerValue(lr, false),
A
Allen Guo 已提交
574
              popart::OptimizerValue(weight_decay, false),
A
Allen Guo 已提交
575 576 577
              popart::OptimizerValue(momentum, true),
              popart::SGD::getUnsetDampening(),
              popart::SGD::getUnsetVelocityScaling(),
578 579
              popart::OptimizerValue(loss_scaling, true),
              clip_norm_settings);
A
Allen Guo 已提交
580
        };
A
Allen Guo 已提交
581 582 583
        resources_->eval_optimizer = std::make_unique<popart::SGD>(
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(0.0, false),
584 585
            popart::OptimizerValue(0.0, true),
            popart::SGD::getUnsetDampening(),
A
Allen Guo 已提交
586
            popart::SGD::getUnsetVelocityScaling(),
587 588
            popart::OptimizerValue(loss_scaling, true),
            clip_norm_settings);
A
Allen Guo 已提交
589 590 591 592 593 594 595 596 597 598
      } else if (type == "adam") {
        auto weight_decay =
            BOOST_GET_CONST(float, op_desc->GetAttr("weight_decay"));
        auto beta1 = BOOST_GET_CONST(float, op_desc->GetAttr("beta1"));
        auto beta2 = BOOST_GET_CONST(float, op_desc->GetAttr("beta2"));
        auto eps = BOOST_GET_CONST(float, op_desc->GetAttr("eps"));
        auto mwn = ipu_strategy_->max_weight_norm;
        VLOG(10) << "set max_weight_norm: " << mwn;
        auto adam_mode_ =
            BOOST_GET_CONST(std::string, op_desc->GetAttr("adam_mode"));
A
Allen Guo 已提交
599 600 601
        auto adam_mode =
            AdamModeFromStr(adam_mode_, ipu_strategy_->use_no_bias_optimizer);
        auto weight_decay_mode_ = ipu_strategy_->weight_decay_mode;
A
Allen Guo 已提交
602
        auto scaled_optimizer_state_ = ipu_strategy_->scaled_optimizer_state;
A
Allen Guo 已提交
603 604 605 606
        if (weight_decay_mode_.empty()) {
          weight_decay_mode_ = BOOST_GET_CONST(
              std::string, op_desc->GetAttr("weight_decay_mode"));
        }
A
Allen Guo 已提交
607 608
        auto weight_decay_mode = WeightDecayModeFromStr(weight_decay_mode_);
        resources_->optimizer_fn = [=](float lr) {
A
Allen Guo 已提交
609 610 611 612 613 614 615 616 617
          if (adam_mode == popart::AdamMode::Lamb ||
              adam_mode == popart::AdamMode::LambNoBias) {
            const std::map<std::string, std::pair<float, bool>>
                optimizer_value = {{"defaultLearningRate", {lr, false}},
                                   {"defaultBeta1", {beta1, false}},
                                   {"defaultBeta2", {beta2, false}},
                                   {"defaultEps", {eps, true}},
                                   {"lossScaling", {loss_scaling, true}},
                                   {"defaultMaxWeightNorm", {mwn, true}}};
618 619 620 621 622 623 624 625 626
            auto optimizer_instance =
                std::make_unique<popart::Adam>(optimizer_value,
                                               adam_mode,
                                               weight_decay_mode,
                                               popart::DataType::UNDEFINED,
                                               accl1_type,
                                               accl2_type,
                                               clip_norm_settings,
                                               scaled_optimizer_state_);
A
Allen Guo 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
            for (int i = 0; i < weight_decay_vars.size(); i++) {
              optimizer_instance->insertSpecific(
                  weight_decay_vars[i],
                  {{"weightDecay", {weight_decay_values[i], false}}});
              VLOG(10) << "Set Tensor " << weight_decay_vars[i]
                       << " weight decay as " << weight_decay_values[i];
            }
            return optimizer_instance;
          } else {
            return std::make_unique<popart::Adam>(
                popart::OptimizerValue(lr, false),
                popart::OptimizerValue(weight_decay, false),
                popart::OptimizerValue(beta1, false),
                popart::OptimizerValue(beta2, false),
                popart::OptimizerValue(eps, true),
                popart::OptimizerValue(loss_scaling, true),
643 644 645 646 647 648 649 650
                popart::OptimizerValue(mwn, true),
                adam_mode,
                weight_decay_mode,
                popart::DataType::UNDEFINED,
                accl1_type,
                accl2_type,
                clip_norm_settings,
                scaled_optimizer_state_);
A
Allen Guo 已提交
651 652
          }
        };
A
Allen Guo 已提交
653
        if (adam_mode == popart::AdamMode::Lamb) {
A
Allen Guo 已提交
654 655 656 657 658 659 660
          const std::map<std::string, std::pair<float, bool>> optimizer_value =
              {{"defaultLearningRate", {0.0, false}},
               {"defaultBeta1", {beta1, false}},
               {"defaultBeta2", {beta2, false}},
               {"defaultEps", {eps, true}},
               {"lossScaling", {loss_scaling, true}},
               {"defaultMaxWeightNorm", {mwn, true}}};
661 662 663 664 665 666 667 668 669
          auto eval_optimizer =
              std::make_unique<popart::Adam>(optimizer_value,
                                             adam_mode,
                                             weight_decay_mode,
                                             popart::DataType::UNDEFINED,
                                             popart::DataType::FLOAT,
                                             popart::DataType::FLOAT,
                                             clip_norm_settings,
                                             scaled_optimizer_state_);
A
Allen Guo 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682
          for (int i = 0; i < weight_decay_vars.size(); i++) {
            eval_optimizer->insertSpecific(weight_decay_vars[i],
                                           {{"weightDecay", {0.0, false}}});
          }
          resources_->eval_optimizer = std::move(eval_optimizer);
        } else if (adam_mode == popart::AdamMode::LambNoBias) {
          const std::map<std::string, std::pair<float, bool>> optimizer_value =
              {{"defaultLearningRate", {0.0, false}},
               {"defaultBeta1", {1.0, false}},
               {"defaultBeta2", {1.0, false}},
               {"defaultEps", {eps, true}},
               {"lossScaling", {loss_scaling, true}},
               {"defaultMaxWeightNorm", {mwn, true}}};
683 684 685 686 687 688 689 690 691
          auto eval_optimizer =
              std::make_unique<popart::Adam>(optimizer_value,
                                             adam_mode,
                                             weight_decay_mode,
                                             popart::DataType::UNDEFINED,
                                             popart::DataType::FLOAT,
                                             popart::DataType::FLOAT,
                                             clip_norm_settings,
                                             scaled_optimizer_state_);
A
Allen Guo 已提交
692 693 694 695 696 697 698 699 700 701 702
          for (int i = 0; i < weight_decay_vars.size(); i++) {
            eval_optimizer->insertSpecific(weight_decay_vars[i],
                                           {{"weightDecay", {0.0, false}}});
          }
          resources_->eval_optimizer = std::move(eval_optimizer);
        } else {
          resources_->eval_optimizer = std::make_unique<popart::Adam>(
              popart::OptimizerValue(0.0, false),
              popart::OptimizerValue(0.0, false),
              popart::OptimizerValue(beta1, false),
              popart::OptimizerValue(beta2, false),
A
Allen Guo 已提交
703 704
              popart::OptimizerValue(eps, true),
              popart::OptimizerValue(loss_scaling, true),
705 706 707 708 709 710 711
              popart::OptimizerValue(mwn, true),
              adam_mode,
              weight_decay_mode,
              popart::DataType::UNDEFINED,
              popart::DataType::FLOAT,
              popart::DataType::FLOAT,
              clip_norm_settings,
A
Allen Guo 已提交
712
              scaled_optimizer_state_);
A
Allen Guo 已提交
713
        }
A
Allen Guo 已提交
714 715 716 717 718 719 720 721 722
      } else if (type == "adaptive") {
        auto alpha = BOOST_GET_CONST(float, op_desc->GetAttr("alpha"));
        auto momentum = BOOST_GET_CONST(float, op_desc->GetAttr("momentum"));
        auto eps = BOOST_GET_CONST(float, op_desc->GetAttr("eps"));
        auto weight_decay =
            BOOST_GET_CONST(float, op_desc->GetAttr("weight_decay"));
        auto adaptive_mode_ =
            BOOST_GET_CONST(std::string, op_desc->GetAttr("adaptive_mode"));
        auto adaptive_mode = AdaptiveModeFromStr(adaptive_mode_);
A
Allen Guo 已提交
723 724 725 726 727
        auto weight_decay_mode_ = ipu_strategy_->weight_decay_mode;
        if (weight_decay_mode_.empty()) {
          weight_decay_mode_ = BOOST_GET_CONST(
              std::string, op_desc->GetAttr("weight_decay_mode"));
        }
A
Allen Guo 已提交
728 729 730 731
        auto weight_decay_mode = WeightDecayModeFromStr(weight_decay_mode_);
        resources_->optimizer_fn = [=](float lr) {
          return std::make_unique<popart::Adaptive>(
              popart::OptimizerValue(lr, false),
A
Allen Guo 已提交
732
              popart::OptimizerValue(weight_decay, false),
A
Allen Guo 已提交
733 734 735
              popart::OptimizerValue(alpha, true),
              popart::OptimizerValue(momentum, true),
              popart::OptimizerValue(eps, true),
736 737 738 739 740 741 742
              popart::OptimizerValue(loss_scaling, true),
              adaptive_mode,
              weight_decay_mode,
              popart::DataType::UNDEFINED,
              accl1_type,
              accl2_type,
              accl3_type);
A
Allen Guo 已提交
743
        };
A
Allen Guo 已提交
744 745 746 747 748 749
        resources_->eval_optimizer = std::make_unique<popart::Adaptive>(
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(0.0, false),
            popart::OptimizerValue(alpha, true),
            popart::OptimizerValue(momentum, true),
            popart::OptimizerValue(eps, true),
750 751 752 753 754 755
            popart::OptimizerValue(loss_scaling, true),
            adaptive_mode,
            weight_decay_mode,
            popart::DataType::UNDEFINED,
            popart::DataType::FLOAT,
            popart::DataType::FLOAT,
A
Allen Guo 已提交
756
            popart::DataType::UNDEFINED);
A
Allen Guo 已提交
757 758 759 760 761 762
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "optimizer %s is not implemented", type));
      }
    }
  }
J
jianghaicheng 已提交
763 764
}

A
Allen Guo 已提交
765 766 767 768 769
void Compiler::PostLower(const std::vector<std::string>& tensor_ids,
                         const OpDesc* op_desc) {
  // Set pipline
  // Due to the limitation of popart, if an op has multiple outputs,
  // pipline settings needs to be set at the same time
J
jianghaicheng 已提交
770 771 772 773 774 775 776 777 778 779
  auto tensor_ids_set =
      std::set<std::string>(tensor_ids.begin(), tensor_ids.end());
  if (op_desc->HasAttr(sIpuIndexAttr)) {
    auto ipu_index = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuIndexAttr));
    builder_->virtualGraph(tensor_ids_set, ipu_index);
    VLOG(10) << "set " << sIpuIndexAttr << " = " << ipu_index
             << " for op: " << op_desc->Type();
    if (op_desc->HasAttr(sIpuStageAttr)) {
      auto ipu_stage = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuStageAttr));
      builder_->pipelineStage(tensor_ids_set, ipu_stage);
A
Allen Guo 已提交
780
      VLOG(10) << "set " << sIpuStageAttr << " = " << ipu_stage
J
jianghaicheng 已提交
781 782 783
               << " for op: " << op_desc->Type();
    }
  }
784 785 786
  // Record output tensors
  auto pd_outs = GetOpOutputs(op_desc);
  PADDLE_ENFORCE_EQ(
787 788
      pd_outs.size(),
      tensor_ids.size(),
789 790 791 792
      platform::errors::Fatal("paddle and popart op have different outputs"));
  for (int i = 0; i < tensor_ids.size(); ++i) {
    resources_->tensors.emplace(pd_outs[i], tensor_ids[i]);
  }
A
Allen Guo 已提交
793 794 795
  for (auto& tensor_id : tensor_ids) {
    PostLower(tensor_id, op_desc, true);
  }
J
jianghaicheng 已提交
796 797
}

A
Allen Guo 已提交
798
void Compiler::PostLower(const std::string& tensor_id, const OpDesc* op_desc) {
799 800 801
  // Record output tensor
  auto pd_outs = GetOpOutputs(op_desc);
  PADDLE_ENFORCE_EQ(
802 803
      pd_outs.size(),
      1,
804 805
      platform::errors::Fatal("paddle and popart op have different outputs"));
  resources_->tensors.emplace(pd_outs[0], tensor_id);
A
Allen Guo 已提交
806 807
  PostLower(tensor_id, op_desc, false);
}
J
jianghaicheng 已提交
808

809 810
void Compiler::PostLower(const std::string& tensor_id,
                         const OpDesc* op_desc,
A
Allen Guo 已提交
811 812 813
                         bool skip_pipline) {
  // Set pipline
  if (!skip_pipline && op_desc->HasAttr(sIpuIndexAttr)) {
J
jianghaicheng 已提交
814 815 816 817 818 819 820
    auto ipu_index = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuIndexAttr));
    builder_->virtualGraph(tensor_id, ipu_index);
    VLOG(10) << "set " << sIpuIndexAttr << " = " << ipu_index
             << " for op: " << op_desc->Type();
    if (op_desc->HasAttr(sIpuStageAttr)) {
      auto ipu_stage = BOOST_GET_CONST(int, op_desc->GetAttr(sIpuStageAttr));
      builder_->pipelineStage(tensor_id, ipu_stage);
A
Allen Guo 已提交
821
      VLOG(10) << "set " << sIpuStageAttr << " = " << ipu_stage
J
jianghaicheng 已提交
822 823 824
               << " for op: " << op_desc->Type();
    }
  }
A
Allen Guo 已提交
825
  // Set amp
A
Allen Guo 已提交
826
  if (op_desc->Type() == "popart_matmul") {
A
Allen Guo 已提交
827 828 829 830
    if (set_amp_for_all_) {
      auto amp = ipu_strategy_->available_memory_proportion;
      if (amp < 0.0f || amp > 1.0) {
        PADDLE_THROW(platform::errors::InvalidArgument(
A
Allen Guo 已提交
831 832
            "AvailableMemoryProportion %f is invalid, which should be in "
            "range [0.0, 1.0]",
A
Allen Guo 已提交
833 834 835 836 837 838 839 840 841 842
            amp));
      }
      if (amp > 0.0f) {
        builder_->setAvailableMemoryProportion(tensor_id, amp);
      }
    } else {
      if (op_desc->HasAttr(sAvailMemAttribute)) {
        auto amp = BOOST_GET_CONST(float, op_desc->GetAttr(sAvailMemAttribute));
        if (amp < 0.0f || amp > 1.0) {
          PADDLE_THROW(platform::errors::InvalidArgument(
A
Allen Guo 已提交
843 844
              "AvailableMemoryProportion %f is invalid, which should be in "
              "range [0.0, 1.0]",
A
Allen Guo 已提交
845 846 847 848 849 850 851 852
              amp));
        }
        if (amp > 0.0f) {
          builder_->setAvailableMemoryProportion(tensor_id, amp);
          VLOG(10) << "set available_memory_proportion for tensor: "
                   << tensor_id << " as " << amp;
        }
      }
A
Allen Guo 已提交
853
    }
A
Allen Guo 已提交
854
    // Set serialize matmul
A
Allen Guo 已提交
855 856 857 858 859 860 861 862
    if (op_desc->HasAttr(sMatmulSerializeFactor)) {
      auto factor =
          BOOST_GET_CONST(int, op_desc->GetAttr(sMatmulSerializeFactor));
      std::string mode = "output_channels";
      if (op_desc->HasAttr(sMatmulSerializeMode)) {
        mode = BOOST_GET_CONST(std::string,
                               op_desc->GetAttr(sMatmulSerializeMode));
      }
A
Allen Guo 已提交
863
      builder_->setSerializeMatMul({tensor_id}, mode, factor, true);
A
Allen Guo 已提交
864 865 866
    }
  }
}
J
jianghaicheng 已提交
867

A
Allen Guo 已提交
868 869 870 871 872 873 874 875
void Compiler::SetCustomOps(
    const std::vector<IpuCustomOpIdentifier>& custom_ops) {
  for (auto x : custom_ops) {
    custom_ops_.emplace(x.paddle_op, x);
  }
}

std::string Compiler::GetFP16ModelProto() {
J
jianghaicheng 已提交
876 877
  popart::GraphTransformer graph_transformer(builder_->getModelProto());
  graph_transformer.convertFloatsToHalfs();
A
Allen Guo 已提交
878
  return graph_transformer.getModelProto();
J
jianghaicheng 已提交
879 880
}

881
std::string Compiler::GetModelProto() { return builder_->getModelProto(); }
J
jianghaicheng 已提交
882 883 884 885 886 887 888 889 890 891 892 893

void Compiler::SaveModelProto(const std::string& path) {
  builder_->saveModelProto(path);
}

void Compiler::SaveModelProtoNoCheck(const std::string& path) {
  auto proto = GetModelProto();
  std::ofstream onnxfile(path, std::ios_base::binary);
  onnxfile.write(proto.data(), proto.size());
  onnxfile.close();
}

A
Allen Guo 已提交
894
std::vector<std::string> Compiler::GetOpInputs(const OpDesc* op) {
J
jianghaicheng 已提交
895 896 897
  auto ins = op->Input("__inputs__");
  std::vector<std::string> inputs;
  for (const auto& in : ins) {
A
Allen Guo 已提交
898 899
    if (resources_->tensors.find(in) != resources_->tensors.end()) {
      inputs.push_back(resources_->tensors[in]);
J
jianghaicheng 已提交
900 901 902 903 904 905 906
    } else {
      inputs.push_back(in);
    }
  }
  return inputs;
}

A
Allen Guo 已提交
907
const std::vector<std::string>& Compiler::GetOpOutputs(const OpDesc* op) {
J
jianghaicheng 已提交
908 909 910
  return op->Output("__outputs__");
}

A
Allen Guo 已提交
911
popart::DebugContext Compiler::BuildDebugContext(const OpDesc* op) {
J
jianghaicheng 已提交
912 913 914 915 916 917 918 919 920 921
  auto op_identify_id =
      BOOST_GET_CONST(std::string, op->GetAttr(sOpIdentifyIdAttr));
  VLOG(10) << "op_identify_id of op: " << op->Type() << " is "
           << op_identify_id;
  return popart::DebugContext(op_identify_id);
}

}  // namespace ipu
}  // namespace platform
}  // namespace paddle