logic.py 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
huangxu96 已提交
15
from . import to_tensor
Z
Zhen Wang 已提交
16
from ..fluid.layer_helper import LayerHelper
17
from ..fluid.data_feeder import check_type, check_variable_and_dtype
Z
Zhen Wang 已提交
18
from ..fluid.layers.layer_function_generator import templatedoc
W
wawltor 已提交
19
from .. import fluid
20 21
from ..fluid.framework import in_dygraph_mode
from paddle.common_ops_import import *
Z
zhulei 已提交
22 23
from ..framework import VarBase as Tensor
from ..framework import ComplexVariable as ComplexTensor
24

25
# TODO: define logic functions of a tensor  
26 27 28 29 30 31
from ..fluid.layers import is_empty  #DEFINE_ALIAS
from ..fluid.layers import isfinite  #DEFINE_ALIAS
from ..fluid.layers import logical_and  #DEFINE_ALIAS
from ..fluid.layers import logical_not  #DEFINE_ALIAS
from ..fluid.layers import logical_or  #DEFINE_ALIAS
from ..fluid.layers import logical_xor  #DEFINE_ALIAS
32 33
from ..fluid.layers import reduce_all  #DEFINE_ALIAS
from ..fluid.layers import reduce_any  #DEFINE_ALIAS
34

35 36
__all__ = [
    'equal',
W
wawltor 已提交
37
    'equal_all',
38 39 40 41 42 43 44 45 46 47 48
    'greater_equal',
    'greater_than',
    'is_empty',
    'isfinite',
    'less_equal',
    'less_than',
    'logical_and',
    'logical_not',
    'logical_or',
    'logical_xor',
    'not_equal',
Z
Zhen Wang 已提交
49
    'allclose',
Z
zhulei 已提交
50
    'is_tensor'
51
    #       'isnan'
52 53 54
]


W
wawltor 已提交
55
def equal_all(x, y, name=None):
56
    """
W
wawltor 已提交
57 58
	:alias_main: paddle.equal_all
	:alias: paddle.equal_all,paddle.tensor.equal_all,paddle.tensor.logic.equal_all
S
swtkiwi 已提交
59

60 61
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
62
    **NOTICE**: The output of this OP has no gradient.
63 64

    Args:
W
wawltor 已提交
65 66 67 68
        x(Tensor): Tensor, data type is float32, float64, int32, int64.
        y(Tensor): Tensor, data type is float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
69 70

    Returns:
W
wawltor 已提交
71
        Tensor: output Tensor, data type is bool, value is [False] or [True].
72 73 74 75 76

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
77

78
          paddle.disable_static()
79 80 81
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
82 83 84 85
          result1 = paddle.equal_all(x, y)
          print(result1.numpy()) # result1 = [True ]
          result2 = paddle.equal_all(x, z)
          print(result2.numpy()) # result2 = [False ]
86
    """
W
wawltor 已提交
87 88

    helper = LayerHelper("equal_all", **locals())
89 90
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
91 92
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
93
    return out
Z
Zhen Wang 已提交
94 95 96


@templatedoc()
97
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
98 99 100 101
    """
    ${comment}

    Args:
102 103
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
104 105
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
106 107 108
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
109 110

    Returns:
111 112 113 114 115 116 117 118
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.
Z
Zhen Wang 已提交
119 120 121 122 123 124

    Examples:
        .. code-block:: python

          import paddle

125
          paddle.disable_static()
Z
Zhen Wang 已提交
126

127 128
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
129
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
130
                                  equal_nan=False, name="ignore_nan")
131 132 133
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
134
                                      equal_nan=True, name="equal_nan")
135 136 137
          np_result2 = result2.numpy()
          # [False]

138 139
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
140 141 142 143 144 145 146 147
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
148 149
    """

150
    if in_dygraph_mode():
H
huangxu96 已提交
151 152 153
        rtol_tensor = to_tensor(rtol, dtype='float64')
        atol_tensor = to_tensor(atol, dtype='float64')
        return core.ops.allclose(x, y, rtol_tensor, atol_tensor, 'equal_nan',
154 155 156 157
                                 equal_nan)

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
158 159 160 161 162
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
H
huangxu96 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    rtol_var = helper.create_global_variable(
        name=fluid.unique_name.generate('rtol'),
        persistable=True,
        dtype='float64',
        shape=[1])
    helper.set_variable_initializer(
        rtol_var, initializer=fluid.initializer.ConstantInitializer(rtol))
    atol_var = helper.create_variable(
        name=fluid.unique_name.generate('atol'),
        persistable=True,
        dtype='float64',
        shape=[1])
    helper.set_variable_initializer(
        atol_var, initializer=fluid.initializer.ConstantInitializer(atol))

Z
Zhen Wang 已提交
178 179
    out = helper.create_variable_for_type_inference(dtype='bool')

H
huangxu96 已提交
180
    inputs = {'Input': x, 'Other': y, 'Rtol': rtol_var, 'Atol': atol_var}
Z
Zhen Wang 已提交
181
    outputs = {'Out': out}
H
huangxu96 已提交
182
    attrs = {'equal_nan': equal_nan}
Z
Zhen Wang 已提交
183 184 185 186
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
187 188


W
wawltor 已提交
189 190
@templatedoc()
def equal(x, y, name=None):
191
    """
W
wawltor 已提交
192 193
	:alias_main: paddle.equal
	:alias: paddle.equal,paddle.tensor.equal,paddle.tensor.logic.equal
S
swtkiwi 已提交
194

195
    This layer returns the truth value of :math:`x == y` elementwise.
W
wawltor 已提交
196
    **NOTICE**: The output of this OP has no gradient.
197 198

    Args:
W
wawltor 已提交
199 200
        x(Tensor): Tensor, data type is float32, float64, int32, int64.
        y(Tensor): Tensor, data type is float32, float64, int32, int64.
201 202 203 204
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
205
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
206 207 208 209 210
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
211 212
          import paddle

213
          paddle.disable_static()
214 215
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
216 217
          result1 = paddle.equal(x, y)
          print(result1.numpy())  # result1 = [True False False]
218
    """
219 220 221 222 223 224 225 226 227 228 229 230 231 232
    if in_dygraph_mode():
        return core.ops.equal(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "equal")
    helper = LayerHelper("equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
233
    return out
234

W
wawltor 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

@templatedoc()
def greater_equal(x, y, name=None):
    """
    :alias_main: paddle.greater_equal
	:alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal

    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
            import paddle

257
            paddle.disable_static()
258 259
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
260 261 262
            result1 = paddle.greater_equal(x, y)
            print(result1.numpy())  # result1 = [True False True]
    """
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    if in_dygraph_mode():
        return core.ops.greater_equal(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    helper = LayerHelper("greater_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    return out


@templatedoc()
def greater_than(x, y, name=None):
    """
    :alias_main: paddle.greater_than
	:alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than

    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
            import paddle

303
            paddle.disable_static()
304 305
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
306 307 308
            result1 = paddle.greater_than(x, y)
            print(result1.numpy())  # result1 = [False False True]
    """
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    if in_dygraph_mode():
        return core.ops.greater_than(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    helper = LayerHelper("greater_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    return out


@templatedoc()
def less_equal(x, y, name=None):
    """
    :alias_main: paddle.less_equal
	:alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal

    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
            import paddle

350
            paddle.disable_static()
351 352
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
353 354 355
            result1 = paddle.less_equal(x, y)
            print(result1.numpy())  # result1 = [True True False]
    """
356 357 358 359 360 361 362 363 364 365 366 367 368 369
    if in_dygraph_mode():
        return core.ops.less_equal(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    helper = LayerHelper("less_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_equal', inputs={'X': [x],
                                   'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    return out


@templatedoc()
def less_than(x, y, name=None):
    """
    :alias_main: paddle.less_than
	:alias: paddle.less_than,paddle.tensor.less_than,paddle.tensor.logic.less_than

    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
            import paddle

395
            paddle.disable_static()
396 397
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
398 399 400
            result1 = paddle.less_than(x, y)
            print(result1.numpy())  # result1 = [False True False]
    """
401 402 403 404 405 406 407 408 409 410 411 412 413 414
    if in_dygraph_mode():
        return core.ops.less_than(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_than")
    helper = LayerHelper("less_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    return out


@templatedoc()
def not_equal(x, y, name=None):
    """
    :alias_main: paddle.not_equal
	:alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal

    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
438

W
wawltor 已提交
439 440
            import paddle

441
            paddle.disable_static()
442 443
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
444 445 446
            result1 = paddle.not_equal(x, y)
            print(result1.numpy())  # result1 = [False True True]
    """
447 448 449 450 451 452 453 454 455 456 457 458 459 460
    if in_dygraph_mode():
        return core.ops.not_equal(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    helper = LayerHelper("not_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
461
    return out
Z
zhulei 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493


def is_tensor(x):
    """

    This function tests whether input object is a paddle.Tensor or a paddle.ComplexTensor.

    Args:
        x (object): Object to test.

    Returns:
        A boolean value. True if 'x' is a paddle.Tensor or a paddle.ComplexTensor, otherwise False.

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input2 = paddle.ComplexTensor(input1, input1)
            check = paddle.is_tensor(input2)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
    return isinstance(x, Tensor) or isinstance(x, ComplexTensor)