logic.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zhen Wang 已提交
15 16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_type
from ..fluid.layers.layer_function_generator import templatedoc
18

19
# TODO: define logic functions of a tensor  
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
__all__ = [
    'equal',
    #            'greater_equal',
    #            'greater_than',
    #            'is_empty',
    #            'isfinite',
    #            'less_equal',
    #            'less_than',
    #            'logical_and',
    #            'logical_not',
    #            'logical_or',
    #            'logical_xor',
    #            'not_equal',
    #            'reduce_all',
    #            'reduce_any',
Z
Zhen Wang 已提交
35
    'allclose',
36
    'elementwise_equal',
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    #            'isnan'
]


def equal(x, y, axis=-1, name=None):
    """
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

    **NOTICE**: The output of this OP has no gradient, and this OP supports broadcasting by :attr:`axis`.

    Args:
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        axis(int32, optional): If X.dimension != Y.dimension, Y.dimension
            must be a subsequence of x.dimension. And axis is the start 
            dimension index for broadcasting Y onto X. For more detail, 
            please refer to OP:`elementwise_add`.
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.

    Returns:
        Variable: output Tensor, data type is bool, value is [False] or [True].

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import paddle
          import numpy as np

          label = fluid.layers.assign(np.array([3, 4], dtype="int32"))
          label_1 = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 4], dtype="int32"))
          out1 = paddle.equal(x=label, y=limit) #out1=[True]
          out2 = paddle.equal(x=label_1, y=limit) #out2=[False]

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle
          import numpy as np

          def gen_data():
              return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }

          x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
          y = fluid.data(name="y", shape=[3,4], dtype='float32')
          out = paddle.equal(x, y, axis=1)
          place = fluid.CPUPlace()
          exe = fluid.Executor(place)

          res = exe.run(feed=gen_data(),
                            fetch_list=[out])
          print(res[0]) #[False]
    """
    helper = LayerHelper("equal_reduce", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    attrs = {}
    attrs['axis'] = axis
    helper.append_op(
        type='equal_reduce',
        inputs={'X': [x],
                'Y': [y]},
        attrs=attrs,
        outputs={'Out': [out]})
    return out
Z
Zhen Wang 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188


@templatedoc()
def allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
    ${comment}

    Args:
        input(inputtype):{input_comment}.
        other(othertype):{other_comment}.
        rtol(rtoltype,optional):{rtol_comment}.
        atol(atoltype,optional):{atol_comment}.
        equal_nan(equalnantype,optional):{equal_nan_comment}.
        name(STR, optional): The default value is None.
                        Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        ${out_comment}.

    Return Type:
        ${out_type}
        
    Examples:
        .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np

          use_cuda = fluid.core.is_compiled_with_cuda()

          a = fluid.data(name="a", shape=[2], dtype='float32')
          b = fluid.data(name="b", shape=[2], dtype='float32')

          result = paddle.allclose(a, b, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          result_nan = paddle.allclose(a, b, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")

          place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())

          x = np.array([10000., 1e-07]).astype("float32")
          y = np.array([10000.1, 1e-08]).astype("float32")
          result_v, result_nan_v = exe.run(
              feed={'a': x, 'b': y},
              fetch_list=[result, result_nan])
          print(result_v, result_nan_v)
          # Output: (array([False]), array([False]))

          x = np.array([10000., 1e-08]).astype("float32")
          y = np.array([10000.1, 1e-09]).astype("float32")
          result_v, result_nan_v = exe.run(
              feed={'a': x, 'b': y},
              fetch_list=[result, result_nan])
          print(result_v, result_nan_v)
          # Output: (array([ True]), array([ True]))

          x = np.array([1.0, float('nan')]).astype("float32")
          y = np.array([1.0, float('nan')]).astype("float32")
          result_v, result_nan_v = exe.run(
              feed={'a': x, 'b': y},
              fetch_list=[result, result_nan])
          print(result_v, result_nan_v)
          # Output: (array([False]), array([ True]))
    """

    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': input, 'Other': other}
    outputs = {'Out': out}
    attrs = {'rtol': rtol, 'atol': atol, 'equal_nan': equal_nan}
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225


def elementwise_equal(x, y, name=None):
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

          import paddle
          import paddle.fluid as fluid
          import numpy as np
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          out1 = paddle.elementwise_equal(x=label, y=limit) #out1=[True, False]
    """
    helper = LayerHelper("elementwise_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]},
        attrs={'force_cpu': False})
    return out