logic.py 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
from paddle.common_ops_import import *
import paddle.fluid as fluid

18
# TODO: define logic functions of a tensor  
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
__all__ = [
    'equal',
    #            'greater_equal',
    #            'greater_than',
    #            'is_empty',
    #            'isfinite',
    #            'less_equal',
    #            'less_than',
    #            'logical_and',
    #            'logical_not',
    #            'logical_or',
    #            'logical_xor',
    #            'not_equal',
    #            'reduce_all',
    #            'reduce_any',
    #            'allclose',
    #            'elementwise_equal',
    #            'isnan'
]


def equal(x, y, axis=-1, name=None):
    """
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

    **NOTICE**: The output of this OP has no gradient, and this OP supports broadcasting by :attr:`axis`.

    Args:
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        axis(int32, optional): If X.dimension != Y.dimension, Y.dimension
            must be a subsequence of x.dimension. And axis is the start 
            dimension index for broadcasting Y onto X. For more detail, 
            please refer to OP:`elementwise_add`.
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.

    Returns:
        Variable: output Tensor, data type is bool, value is [False] or [True].

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import paddle
          import numpy as np

          label = fluid.layers.assign(np.array([3, 4], dtype="int32"))
          label_1 = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 4], dtype="int32"))
          out1 = paddle.equal(x=label, y=limit) #out1=[True]
          out2 = paddle.equal(x=label_1, y=limit) #out2=[False]

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle
          import numpy as np

          def gen_data():
              return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }

          x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
          y = fluid.data(name="y", shape=[3,4], dtype='float32')
          out = paddle.equal(x, y, axis=1)
          place = fluid.CPUPlace()
          exe = fluid.Executor(place)

          res = exe.run(feed=gen_data(),
                            fetch_list=[out])
          print(res[0]) #[False]
    """
    helper = LayerHelper("equal_reduce", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    attrs = {}
    attrs['axis'] = axis
    helper.append_op(
        type='equal_reduce',
        inputs={'X': [x],
                'Y': [y]},
        attrs=attrs,
        outputs={'Out': [out]})
    return out