tensor.py 59.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
29
import numpy
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'kron',
Y
Yu Yang 已提交
59 60 61
]


X
xuwei06 已提交
62
def create_tensor(dtype, name=None, persistable=False):
63
    """
W
wangchaochaohu 已提交
64
    Create a variable, which will hold a Tensor with data type dtype.
65 66

    Args:
W
wangchaochaohu 已提交
67 68 69 70
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
71
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
72
            default value is False.
73 74

    Returns:
W
wangchaochaohu 已提交
75
        Variable: The tensor to be created according to dtype.
76 77 78 79

    Examples:
        .. code-block:: python

80
          import paddle.fluid as fluid
81 82
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
83 84 85 86
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
87
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
88 89
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
90 91


92 93
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
94
                     name=None,
95 96 97 98
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
99
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
100 101 102 103 104
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

105 106 107 108 109 110 111
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
112 113 114
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
115
        default_initializer (Initializer, optional): Initializer for the parameter
116 117

    Returns:
118
        The created parameter.
Y
yuyang18 已提交
119 120

    Examples:
121 122
        .. code-block:: python

123
            import paddle.fluid as fluid
124 125
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
126
    """
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
146
    helper = LayerHelper("create_parameter", **locals())
147
    if attr is None:
X
xuwei06 已提交
148
        attr = ParamAttr(name=name)
149 150
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
151 152 153
                                   default_initializer)


154 155 156 157 158 159 160
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
161
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
162

163 164 165
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
166
                      variable will be filled with it.
167 168
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
169
                           Default: False
170
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
171
                         Default: False
172 173
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
174 175

    Returns:
176
        Variable: The created Variable
F
fengjiayi 已提交
177 178 179 180

    Examples:
        .. code-block:: python

181
            import paddle.fluid as fluid
182 183
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
184
                                           persistable=True, force_cpu=True, name='new_var')
185
    """
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
203 204
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
205 206 207 208 209
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
210 211 212
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
213

Q
Qiao Longfei 已提交
214 215 216
    return var


217
def cast(x, dtype):
Y
Yu Yang 已提交
218
    """
219 220 221
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
222 223

    Args:
224 225 226
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
227
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
228 229

    Returns:
230
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
231 232 233

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
234

235
            import paddle.fluid as fluid
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
258
    """
259 260
    check_variable_and_dtype(
        x, 'x',
261 262
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
263 264 265 266 267 268
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
269
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
270 271 272 273 274 275 276 277 278
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


279
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
280
    """
281 282
    **Concat**

283
    This OP concatenates the input along the axis.
284 285

    Args:
286 287
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
288
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
289 290 291 292 293
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
294 295

    Returns:
296
        Variable: A Tensor with the same data type as input's.
297 298 299

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
300

301
            import paddle.fluid as fluid
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325 326

    if in_dygraph_mode():
S
songyouwei 已提交
327 328 329 330 331
        if isinstance(axis, Variable):
            axis = axis.numpy()
            assert axis.shape == (
                1, ), "axis of type Variable should have shape [1]"
            axis = axis[0]
332
        return core.ops.concat(input, 'axis', axis)
333

334 335 336 337 338
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
339
    for id, x in enumerate(input):
340 341
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
342 343
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
344

345
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
346
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
370 371 372
    return out


G
Guo Sheng 已提交
373
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
374
    """
G
Guo Sheng 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
425 426

    Args:
G
Guo Sheng 已提交
427 428 429 430 431 432 433
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
434 435

    Returns:
G
Guo Sheng 已提交
436 437 438
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
439 440 441 442

    Examples:
        .. code-block:: python

443
            import paddle.fluid as fluid
444
            import numpy as np
G
Guo Sheng 已提交
445 446 447 448 449 450 451
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
452
    """
453 454 455 456 457 458 459 460 461 462 463
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

L
li099 已提交
464
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
465 466 467
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
468
        type='tensor_array_to_tensor',
L
li099 已提交
469 470 471
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
472 473
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
474 475 476
    return out, out_index


477
def sums(input, out=None):
F
fengjiayi 已提交
478
    """
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
500 501

    Args:
502 503 504 505
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
506 507

    Returns:
508 509
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
510 511

    Examples:
F
fengjiayi 已提交
512
        .. code-block:: python
K
kavyasrinet 已提交
513

514 515 516 517 518 519 520 521 522
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
523

524 525
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
526
    """
527 528 529 530 531 532 533 534 535
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
536 537
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
538 539
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
540 541 542 543
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
544 545 546 547 548
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
549 550 551
    return out


F
fengjiayi 已提交
552
def assign(input, output=None):
553
    """
554
    The OP copies the :attr:`input` to the :attr:`output`.
555

556 557 558 559 560
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
561 562

    Returns:
563
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
564 565 566

    Examples:
        .. code-block:: python
567

568
          import paddle.fluid as fluid
569 570 571 572 573 574
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
575
    """
Y
Yu Yang 已提交
576
    helper = LayerHelper('assign', **locals())
577
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
578
    if isinstance(input, Variable):
579 580 581
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
582 583 584
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
585
        helper.append_op(
R
robot 已提交
586
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
587 588
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
589 590 591 592
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
593
            value_name = "fp32_values"
594
            values = [float(v) for v in input.flat]
595
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
596
            value_name = "int32_values"
597
            values = [int(v) for v in input.flat]
598 599 600
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
601
        else:
602 603
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
604
                "the data type of 'input' must be bool, float32, int32 or int64, but "
605
                "received %s." % convert_dtype(dtype))
606 607 608
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
609 610 611
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
612 613 614 615 616 617
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
618
                value_name: values
X
xuwei06 已提交
619 620
            })

Y
Yu Yang 已提交
621 622 623
    return output


Q
QI JUN 已提交
624
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
625
    """
W
wangchaochaohu 已提交
626
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
627
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
628

T
tianshuo78520a 已提交
629
    The attribute `stop_gradient` of the created Tensor is set to True.
630 631

    Args:
632 633 634 635
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
636 637
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
W
wangchaochaohu 已提交
638 639 640
        value(float16|float32|float64|int32|int64|Variable): The constant value used to initialize 
            the Tensor to be created. If value is an Variable, it should be an 1-D Tensor.
        force_cpu(bool): data should be on CPU if it's true, default value is False.
W
wangchaochaohu 已提交
641 642 643
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
644 645

    Returns:
W
wangchaochaohu 已提交
646 647 648 649 650
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
651 652 653 654

    Examples:
        .. code-block:: python

655
          import paddle.fluid as fluid
656 657 658
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
659
          # data1=[[5], [5]] data2=[[5], [5]]
660 661 662 663 664 665 666 667

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
668 669 670 671
          
          # attr value is an Variable Tensor.
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
672
    """
W
wangchaochaohu 已提交
673 674 675 676
    inputs = {}
    attrs = {'force_cpu': force_cpu}
    if isinstance(value, Variable):
        inputs['ValueTensor'] = value
677
    else:
W
wangchaochaohu 已提交
678 679 680 681 682
        attrs['value'] = float(value)
        if convert_dtype(dtype) in ['int64', 'int32']:
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
683 684 685

    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
S
songyouwei 已提交
686 687 688
            shape = list(
                map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x,
                    shape))
689
        else:
S
songyouwei 已提交
690
            shape = list(shape.numpy().astype(int))
691 692
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
693 694 695 696 697 698 699

        if isinstance(value, Variable):
            if convert_dtype(dtype) in ['int64', 'int32']:
                attrs['str_value'] = str(int(value.numpy()))
            else:
                attrs['str_value'] = str(float(value.numpy()))

700 701
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
702 703
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
704 705 706
        out.stop_gradient = True
        return out

707
    check_dtype(dtype, 'dtype',
708 709 710
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
711 712 713 714 715 716 717 718
    if isinstance(shape, Variable):
        check_variable_and_dtype(shape, 'shape', ['int32', 'int64'],
                                 'fill_constant')
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
W
wangchaochaohu 已提交
719 720 721 722 723 724
    inputs = utils._get_shape_tensor_inputs(
        inputs=inputs,
        helper=helper,
        attrs=attrs,
        shape=shape,
        op_type='fill_constant')
L
liym27 已提交
725

Y
Yu Yang 已提交
726
    if out is None:
X
Xin Pan 已提交
727
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
728
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
729 730
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
731
        inputs=inputs,
Y
Yu Yang 已提交
732
        outputs={'Out': [out]},
L
liym27 已提交
733
        attrs=attrs,
M
minqiyang 已提交
734
        stop_gradient=True)
Y
Yu Yang 已提交
735 736 737 738
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
739
@templatedoc()
Y
Yu Yang 已提交
740 741 742 743 744
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
745 746
                                  output_dim_idx=0,
                                  force_cpu=False):
747
    """
T
tianshuo78520a 已提交
748
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
749 750 751 752
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
753 754

    Args:
W
wangchaochaohu 已提交
755 756 757 758 759 760 761 762 763 764 765
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
766
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
767 768

    Returns:
W
wangchaochaohu 已提交
769
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
770 771 772 773 774

    Examples:

        .. code-block:: python

775
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
776
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
777
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
778
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
779

780
    """
Y
Yu Yang 已提交
781
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
782
    out = helper.create_variable_for_type_inference(dtype=dtype)
783 784 785 786 787 788
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
789
        'force_cpu': force_cpu
790 791 792 793 794
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
795 796 797 798
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
799
        attrs=attrs)
Y
Yu Yang 已提交
800 801 802 803
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
804 805 806 807
def argmin(x, axis=0):
    """
    **argmin**

808 809
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
810 811

    Args:
812 813 814 815 816
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
817

S
sneaxiy 已提交
818
    Returns:
819
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
820

S
sneaxiy 已提交
821 822
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
823

824
            import paddle.fluid as fluid
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
852
    """
853 854 855
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
856
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
857
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
858 859 860 861 862
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
863
    out.stop_gradient = True
S
sneaxiy 已提交
864 865 866 867 868 869 870
    return out


def argmax(x, axis=0):
    """
    **argmax**

871 872
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
873 874

    Args:
875 876 877 878 879
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
880

S
sneaxiy 已提交
881
    Returns:
882
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
883

S
sneaxiy 已提交
884 885
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
886

887
            import paddle.fluid as fluid
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
915
    """
916 917 918
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
919
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
920
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
921 922 923 924 925
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
926
    out.stop_gradient = True
S
sneaxiy 已提交
927 928 929
    return out


930
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
931
    """
932 933 934
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
935 936

    Args:
937 938 939 940 941
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
942 943 944
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
945 946 947
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
948 949

    Returns:
950 951 952
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
953 954 955 956

    Examples:
        .. code-block:: python

957
            import paddle.fluid as fluid
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
999
    """
1000 1001 1002
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1003
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1004 1005 1006 1007
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1008 1009 1010 1011
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1012
                 'Indices': ids},
1013 1014
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1015 1016 1017
    return out, ids


Y
Yang Yu 已提交
1018
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1019
    """
1020 1021
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1022

1023 1024 1025 1026 1027 1028 1029
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1030 1031

    Returns:
1032
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1033 1034 1035 1036

    Examples:
        .. code-block:: python

1037
          import paddle.fluid as fluid
1038
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
1039
    """
1040 1041 1042 1043
    check_type(shape, 'shape', (list, tuple), 'ones')
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'ones')
C
chengduozh 已提交
1044 1045
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
1046 1047 1048
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
1049
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1050
    """
1051 1052
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1053

1054 1055 1056 1057 1058 1059 1060
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1061 1062

    Returns:
1063
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1064 1065 1066 1067

    Examples:
        .. code-block:: python

1068
          import paddle.fluid as fluid
1069
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
1070
    """
1071
    check_type(shape, 'shape', (list, tuple), 'zeros')
1072 1073 1074
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
1075
    return fill_constant(value=0.0, **locals())
1076 1077


F
fengjiayi 已提交
1078 1079
def reverse(x, axis):
    """
1080
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1081

1082 1083 1084 1085 1086
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
1087 1088

    Returns:
1089
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1090 1091 1092 1093

    Examples:
        .. code-block:: python

1094
          import paddle.fluid as fluid
1095 1096 1097 1098
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1099 1100 1101 1102
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1103
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1104 1105
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1106
        inputs={'X': x},
F
fengjiayi 已提交
1107 1108 1109 1110 1111
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1112 1113 1114 1115 1116 1117 1118
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1119 1120 1121
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1137 1138
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1139
        file_path(str): The file path where variables will be saved.
1140
        overwrite(bool): Whether or not cover the given file when it has already
1141 1142
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1143 1144 1145 1146 1147 1148 1149 1150

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1151
            import paddle.fluid as fluid
1152 1153 1154 1155 1156 1157 1158
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1171
    Loads a list of variable from a single file.
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1183 1184 1185 1186 1187 1188 1189


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1190
       x (Variable): The Tensor/LoDTensor to be checked.
1191 1192

    Returns:
L
liu zhengxi 已提交
1193
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1194 1195 1196 1197 1198 1199 1200 1201
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1202
    """
1203
    check_type(x, 'x', (Variable), 'has_inf')
1204
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1205
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1206 1207 1208 1209 1210 1211 1212 1213 1214
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1215
       x (Variable): The Tensor/LoDTensor to be checked.
1216 1217

    Returns:
L
liu zhengxi 已提交
1218
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1219 1220 1221 1222 1223 1224 1225 1226
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1227
    """
1228
    check_type(x, 'x', (Variable), 'has_nan')
1229
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1230
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1245 1246 1247 1248 1249

    Examples:

        .. code-block:: python

1250
            import paddle.fluid as fluid
1251 1252 1253
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1254
            out = fluid.layers.isfinite(var)
1255
    """
1256 1257
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1258
    helper = LayerHelper("isfinite", **locals())
1259

1260
    out = helper.create_variable_for_type_inference(dtype='bool')
1261 1262
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1272 1273 1274 1275
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1276
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1277 1278 1279
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1280
                                  distance between two adjacent values, out[i+1] - out[i].
1281
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1282

L
Liufang Sang 已提交
1283 1284 1285
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1286 1287 1288 1289 1290

    examples:

        .. code-block:: python

1291
             import paddle.fluid as fluid
W
whs 已提交
1292 1293 1294 1295 1296
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

1297 1298 1299 1300
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1301 1302
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1303 1304 1305 1306 1307
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1308 1309
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1310 1311 1312
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1313 1314
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1315 1316
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1326
    out.stop_gradient = True
W
whs 已提交
1327
    return out
Z
zhoukunsheng 已提交
1328 1329


Z
zhoukunsheng 已提交
1330 1331
def linspace(start, stop, num, dtype):
    """
1332
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1333 1334

    Args:
1335 1336 1337 1338 1339 1340 1341
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1342 1343

    Returns:
1344 1345 1346
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1347

Z
zhoukunsheng 已提交
1348
    Examples:
Z
zhoukunsheng 已提交
1349 1350
        .. code-block:: python

1351
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1352 1353
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1354 1355 1356 1357

    """
    helper = LayerHelper("linspace", **locals())

1358 1359 1360 1361
    check_type(start, 'start', (Variable, float, int), linspace)
    check_type(stop, 'stop', (Variable, float, int), linspace)
    check_type(num, 'num', (Variable, float, int), linspace)

Z
zhoukunsheng 已提交
1362 1363
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1364 1365 1366 1367
    else:
        check_variable_and_dtype(start, "start", ["float32", "float64"],
                                 "linspace")

Z
zhoukunsheng 已提交
1368 1369
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
1370 1371 1372
    else:
        check_variable_and_dtype(stop, "stop", ["float32", "float64"],
                                 "linspace")
Z
zhoukunsheng 已提交
1373 1374
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)
1375 1376
    else:
        check_variable_and_dtype(num, "num", ["int32"], "linspace")
Z
zhoukunsheng 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1387 1388


Z
zhoukunsheng 已提交
1389 1390
def zeros_like(x, out=None):
    """
1391
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1392 1393 1394
    with `x`.

    Args:
1395 1396 1397
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
T
tianshuo78520a 已提交
1398
            The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1399 1400

    Returns:
1401 1402
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1403 1404 1405 1406

    Examples:
        .. code-block:: python

1407
          import paddle.fluid as fluid
1408
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1409 1410
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1411 1412
    """

1413 1414
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1415 1416 1417
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1418 1419 1420 1421 1422
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')

Z
zhoukunsheng 已提交
1423 1424 1425 1426
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1427 1428 1429 1430


def diag(diagonal):
    """
1431
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1432 1433

    Args:
1434 1435
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1436 1437

    Returns:
1438 1439
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1440 1441 1442 1443 1444 1445 1446

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1447 1448 1449

          import paddle.fluid as fluid
          import numpy as np
1450 1451 1452
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1453 1454

    """
1455 1456 1457
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1470 1471


1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1484 1485
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1486 1487

    Returns:
1488
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1489 1490 1491 1492 1493

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1494 1495
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1496
          #  [0, 1, 0]
1497 1498
          #  [0, 0, 1]]

1499
          data = fluid.layers.eye(2, 3, dtype='int32')
1500
          # [[1, 0, 0]
1501
          #  [0, 1, 0]]
1502 1503

          data = fluid.layers.eye(2, batch_shape=[3])
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1556
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1567 1568
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1569 1570 1571 1572

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1573 1574 1575 1576
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1577 1578 1579 1580 1581 1582
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648


@templatedoc(op_type="kron")
def kron(x, y, out=None, name=None):
    """${comment}

    Args:
        x (Variable): the fist operand of kron op, data type: float16, float32, 
            float64, int32 or int64.
        y (Variable): the second operand of kron op, data type: float16, 
            float32, float64, int32 or int64. Its data type should be the same 
            with x.
        out (Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of 
            operation. If out is None, a new Varibale will be create to store 
            the result. Defaults to None.
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property.  For more information, please 
            refer to :ref:`api_guide_Name`.

    Returns:
        Variable: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.

    Examples:
        .. code-block:: python
        
          import paddle
          from paddle import fluid
          import paddle.fluid.dygraph as dg
          import numpy as np

          a = np.arange(1, 5).reshape(2, 2).astype(np.float32)
          b = np.arange(1, 10).reshape(3, 3).astype(np.float32)

          place = fluid.CPUPlace()
          with dg.guard(place):
              a_var = dg.to_variable(a)
              b_var = dg.to_variable(b)
              c_var = fluid.layers.kron(a_var, b_var)
              c_np = c_var.numpy()
          print(c_np)

          #[[ 1.  2.  3.  2.  4.  6.]
          # [ 4.  5.  6.  8. 10. 12.]
          # [ 7.  8.  9. 14. 16. 18.]
          # [ 3.  6.  9.  4.  8. 12.]
          # [12. 15. 18. 16. 20. 24.]
          # [21. 24. 27. 28. 32. 36.]]
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        check_variable_and_dtype(
            out, 'out', ['float16', 'float32', 'float64', 'int32', 'int64'],
            'kron')
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out