pool_with_index_op.cc 11.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_with_index_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20 21
inline int OutputSizeMaxPool(int input_size, int filter_size, int padding,
                             int stride) {
C
chengduoZH 已提交
22 23 24 25 26 27 28 29
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
30
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Out(Output) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
C
chengduoZH 已提交
36
                   "Mask(Output) of Pooling should not be null.");
C
chengduoZH 已提交
37 38 39 40 41 42 43 44

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
45
                   "Pooling intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
46

C
chengduoZH 已提交
47
    if (ctx->Attrs().Get<bool>("global_pooling")) {
C
chengduoZH 已提交
48
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
49 50
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
51
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
52
      }
C
chengduoZH 已提交
53 54 55
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
C
fix doc  
chengduoZH 已提交
56
                   "Input size and pooling size should be consistent.");
C
chengduoZH 已提交
57
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
C
chengduoZH 已提交
58
                      "Strides size and pooling size should be the same.");
C
chengduoZH 已提交
59
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
C
chengduoZH 已提交
60
                      "Paddings size and pooling size should be the same.");
C
chengduoZH 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(OutputSizeMaxPool(in_x_dims[i + 2], ksize[i],
                                               paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
76
  void InferShape(framework::InferShapeContext *ctx) const override {
77
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
C
chengduoZH 已提交
78
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
C
chengduoZH 已提交
79 80
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input(X@GRAD) should not be null.");
C
chengduoZH 已提交
81 82 83 84 85 86 87 88 89 90 91
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool2dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
K
kexinzhao 已提交
92 93 94 95
        "(Tensor) The input tensor of pooling operator. "
        "The format of input tensor is NCHW, where N is batch size, C is the "
        "number of channels, H is the height of the image, "
        "and W is the width of the image.");
C
chengduoZH 已提交
96
    AddOutput("Out",
K
kexinzhao 已提交
97 98 99 100 101
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is "
              "the number of channels, H is the height of the image "
              "and W is the width of the image.");
C
chengduoZH 已提交
102
    AddOutput("Mask",
K
kexinzhao 已提交
103 104 105 106 107 108
              "(Tensor) The Mask tensor of pooling operator."
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is the number of channels, "
              "H is the height of the image, "
              "and W is the width of the image. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
109

C
fix bug  
chengduoZH 已提交
110
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
111 112
                              "(vector<int>) The pooling window size(height, "
                              "width) of pooling operator. "
C
chengduoZH 已提交
113
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
114 115
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
116
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
117
    AddAttr<bool>(
C
chengduoZH 已提交
118
        "global_pooling",
K
kexinzhao 已提交
119
        "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
120
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
121
        .SetDefault(false);
K
kexinzhao 已提交
122 123 124
    AddAttr<std::vector<int>>("strides",
                              "(vector<int>, default {1, 1}), strides(height, "
                              "width) of pooling operator.")
C
chengduoZH 已提交
125
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
126
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
127 128
    AddAttr<std::vector<int>>(
        "paddings",
K
kexinzhao 已提交
129 130
        "(vector<int>, defalut {0, 0}), paddings(height, width) of pooling "
        "operator. "
C
chengduoZH 已提交
131
        "If global_pooling = true, paddings and will be ignored.")
C
chengduoZH 已提交
132
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
133
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
134 135

    AddComment(R"DOC(
K
kexinzhao 已提交
136 137
MaxPool2d Operator.

C
chengduoZH 已提交
138
The maxPooling2d with index operation calculates the output and the mask
K
kexinzhao 已提交
139 140 141 142
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, 
and W is the width of the feature.
C
chengduoZH 已提交
143 144
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
145 146 147 148
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
149
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
150
  Output:
K
kexinzhao 已提交
151 152
       Out shape: $(N, C, H_{out}, W_{out})$
       Mask shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
153
  where
K
kexinzhao 已提交
154 155 156 157 158
       $$
       H_{out} = (H_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
       W_{out} = (W_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1
       $$

C
chengduoZH 已提交
159 160 161 162 163 164 165 166 167
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool3dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
168 169 170 171 172 173
    AddInput("X",
             "(Tensor) The input tensor of pooling operator. "
             "The format of input tensor is NCDHW, where N is batch size, C is "
             "the number of channels, and D, H and W are the depth, height and "
             "width of "
             "the image, respectively");
C
chengduoZH 已提交
174
    AddOutput("Out",
K
kexinzhao 已提交
175 176 177 178 179
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, "
              "and D, H and W are the depth, height and "
              "width of the image, respectively.");
C
chengduoZH 已提交
180
    AddOutput("Mask",
K
kexinzhao 已提交
181 182 183 184 185 186
              "(Tensor) The Mask tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, and "
              "D, H and W are the depth, height and width "
              "of the image, respectively. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
187

C
fix bug  
chengduoZH 已提交
188
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
189 190
                              "(vector<int>) The pooling window size(depth, "
                              "height, width) of pooling operator. "
C
chengduoZH 已提交
191
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
192 193
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
194
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
195
    AddAttr<bool>(
C
chengduoZH 已提交
196
        "global_pooling",
K
kexinzhao 已提交
197
        "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
198
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
199
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
200
    AddAttr<std::vector<int>>("strides",
K
kexinzhao 已提交
201
                              "(vector<int>, default {1,1,1}), strides(depth, "
C
fix doc  
chengduoZH 已提交
202
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
203
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
204
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
205 206
    AddAttr<std::vector<int>>(
        "paddings",
K
kexinzhao 已提交
207 208
        "(vector, defalut {0,0,0}), paddings(depth, "
        "height, width) of pooling operator. "
C
chengduoZH 已提交
209
        "If global_pooling = true, paddings and ksize will be ignored.")
C
chengduoZH 已提交
210
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
211
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
212

C
chengduoZH 已提交
213
    AddComment(R"DOC(
K
kexinzhao 已提交
214 215
MaxPool3d Operator.

C
chengduoZH 已提交
216 217
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
K
kexinzhao 已提交
218 219 220 221
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. 
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
222
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
223 224 225 226
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
227
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
228
  Output:
K
kexinzhao 已提交
229 230
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
       Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
231
  where
K
kexinzhao 已提交
232 233 234 235 236 237
       $$
       D_{out} = (D_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
       H_{out} = (H_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1 \\
       W_{out} = (W_{in} - ksize[2] + 2 * paddings[2]) / strides[2] + 1
       $$

C
chengduoZH 已提交
238 239 240
)DOC");
  }
};
C
chengduoZH 已提交
241

C
chengduoZH 已提交
242 243 244 245 246
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

C
chengduoZH 已提交
247 248
REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool2dWithIndexOpMaker, max_pool2d_with_index_grad,
C
chengduoZH 已提交
249 250 251
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
252
    max_pool2d_with_index,
C
chengduoZH 已提交
253 254
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, double>);
C
chengduoZH 已提交
255
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
256
    max_pool2d_with_index_grad,
C
chengduoZH 已提交
257 258
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, double>)
C
chengduoZH 已提交
259

C
chengduoZH 已提交
260 261
REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad,
C
chengduoZH 已提交
262 263 264
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
265
    max_pool3d_with_index,
C
chengduoZH 已提交
266 267
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, double>);
C
chengduoZH 已提交
268
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
269
    max_pool3d_with_index_grad,
C
chengduoZH 已提交
270 271
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, double>)