test_callbacks.py 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import sys
16 17 18 19 20
import unittest
import time
import random
import tempfile
import shutil
L
LiuChiachi 已提交
21
import numpy as np
22

L
LiuChiachi 已提交
23
import paddle
24 25 26 27
from paddle import Model
from paddle.static import InputSpec
from paddle.vision.models import LeNet
from paddle.hapi.callbacks import config_callbacks
28
import paddle.vision.transforms as T
L
LiuChiachi 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
from paddle.vision.datasets import MNIST
from paddle.metric import Accuracy
from paddle.nn.layer.loss import CrossEntropyLoss


class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)
51 52 53 54 55 56 57 58 59 60 61


class TestCallbacks(unittest.TestCase):
    def setUp(self):
        self.save_dir = tempfile.mkdtemp()

    def tearDown(self):
        shutil.rmtree(self.save_dir)

    def run_callback(self):
        epochs = 2
L
LielinJiang 已提交
62
        steps = 5
63
        freq = 2
L
LielinJiang 已提交
64
        eval_steps = 2
65

66
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'image')]
67 68
        lenet = Model(LeNet(), inputs)
        lenet.prepare()
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

        cbks = config_callbacks(
            model=lenet,
            batch_size=128,
            epochs=epochs,
            steps=steps,
            log_freq=freq,
            verbose=self.verbose,
            metrics=['loss', 'acc'],
            save_dir=self.save_dir)
        cbks.on_begin('train')

        logs = {'loss': 50.341673, 'acc': 0.00256}
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            for step in range(steps):
                cbks.on_batch_begin('train', step, logs)
                logs['loss'] -= random.random() * 0.1
                logs['acc'] += random.random() * 0.1
                time.sleep(0.005)
                cbks.on_batch_end('train', step, logs)
            cbks.on_epoch_end(epoch, logs)

            eval_logs = {'eval_loss': 20.341673, 'eval_acc': 0.256}
            params = {
                'steps': eval_steps,
                'metrics': ['eval_loss', 'eval_acc'],
            }
            cbks.on_begin('eval', params)
            for step in range(eval_steps):
                cbks.on_batch_begin('eval', step, eval_logs)
                eval_logs['eval_loss'] -= random.random() * 0.1
                eval_logs['eval_acc'] += random.random() * 0.1
                eval_logs['batch_size'] = 2
                time.sleep(0.005)
                cbks.on_batch_end('eval', step, eval_logs)
            cbks.on_end('eval', eval_logs)

            test_logs = {}
            params = {'steps': eval_steps}
109
            cbks.on_begin('predict', params)
110
            for step in range(eval_steps):
111
                cbks.on_batch_begin('predict', step, test_logs)
112 113
                test_logs['batch_size'] = 2
                time.sleep(0.005)
114 115
                cbks.on_batch_end('predict', step, test_logs)
            cbks.on_end('predict', test_logs)
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

        cbks.on_end('train')

    def test_callback_verbose_0(self):
        self.verbose = 0
        self.run_callback()

    def test_callback_verbose_1(self):
        self.verbose = 1
        self.run_callback()

    def test_callback_verbose_2(self):
        self.verbose = 2
        self.run_callback()

131 132 133 134
    def test_callback_verbose_3(self):
        self.verbose = 3
        self.run_callback()

135 136 137

if __name__ == '__main__':
    unittest.main()