test_callbacks.py 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import sys
16 17 18 19 20
import unittest
import time
import random
import tempfile
import shutil
L
LiuChiachi 已提交
21
import numpy as np
22

L
LiuChiachi 已提交
23
import paddle
24 25 26 27
from paddle import Model
from paddle.static import InputSpec
from paddle.vision.models import LeNet
from paddle.hapi.callbacks import config_callbacks
28
import paddle.vision.transforms as T
L
LiuChiachi 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
from paddle.vision.datasets import MNIST
from paddle.metric import Accuracy
from paddle.nn.layer.loss import CrossEntropyLoss


class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65


class TestCallbacks(unittest.TestCase):
    def setUp(self):
        self.save_dir = tempfile.mkdtemp()

    def tearDown(self):
        shutil.rmtree(self.save_dir)

    def run_callback(self):
        epochs = 2
        steps = 50
        freq = 2
        eval_steps = 20

66
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'image')]
67 68
        lenet = Model(LeNet(), inputs)
        lenet.prepare()
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

        cbks = config_callbacks(
            model=lenet,
            batch_size=128,
            epochs=epochs,
            steps=steps,
            log_freq=freq,
            verbose=self.verbose,
            metrics=['loss', 'acc'],
            save_dir=self.save_dir)
        cbks.on_begin('train')

        logs = {'loss': 50.341673, 'acc': 0.00256}
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            for step in range(steps):
                cbks.on_batch_begin('train', step, logs)
                logs['loss'] -= random.random() * 0.1
                logs['acc'] += random.random() * 0.1
                time.sleep(0.005)
                cbks.on_batch_end('train', step, logs)
            cbks.on_epoch_end(epoch, logs)

            eval_logs = {'eval_loss': 20.341673, 'eval_acc': 0.256}
            params = {
                'steps': eval_steps,
                'metrics': ['eval_loss', 'eval_acc'],
            }
            cbks.on_begin('eval', params)
            for step in range(eval_steps):
                cbks.on_batch_begin('eval', step, eval_logs)
                eval_logs['eval_loss'] -= random.random() * 0.1
                eval_logs['eval_acc'] += random.random() * 0.1
                eval_logs['batch_size'] = 2
                time.sleep(0.005)
                cbks.on_batch_end('eval', step, eval_logs)
            cbks.on_end('eval', eval_logs)

            test_logs = {}
            params = {'steps': eval_steps}
109
            cbks.on_begin('predict', params)
110
            for step in range(eval_steps):
111
                cbks.on_batch_begin('predict', step, test_logs)
112 113
                test_logs['batch_size'] = 2
                time.sleep(0.005)
114 115
                cbks.on_batch_end('predict', step, test_logs)
            cbks.on_end('predict', test_logs)
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

        cbks.on_end('train')

    def test_callback_verbose_0(self):
        self.verbose = 0
        self.run_callback()

    def test_callback_verbose_1(self):
        self.verbose = 1
        self.run_callback()

    def test_callback_verbose_2(self):
        self.verbose = 2
        self.run_callback()

131 132 133 134
    def test_callback_verbose_3(self):
        self.verbose = 3
        self.run_callback()

135
    def test_visualdl_callback(self):
136
        # visualdl not support python2
137 138 139 140 141 142
        if sys.version_info < (3, ):
            return

        inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        labels = [InputSpec([None, 1], 'int64', 'label')]

143 144 145 146 147
        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        train_dataset = paddle.vision.datasets.MNIST(
            mode='train', transform=transform)
        eval_dataset = paddle.vision.datasets.MNIST(
            mode='test', transform=transform)
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

        net = paddle.vision.LeNet()
        model = paddle.Model(net, inputs, labels)

        optim = paddle.optimizer.Adam(0.001, parameters=net.parameters())
        model.prepare(
            optimizer=optim,
            loss=paddle.nn.CrossEntropyLoss(),
            metrics=paddle.metric.Accuracy())

        callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir')
        model.fit(train_dataset,
                  eval_dataset,
                  batch_size=64,
                  callbacks=callback)

L
LiuChiachi 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    def test_earlystopping(self):
        paddle.seed(2020)
        for dynamic in [True, False]:
            paddle.enable_static if not dynamic else None
            device = paddle.set_device('cpu')
            sample_num = 100
            train_dataset = MnistDataset(mode='train', sample_num=sample_num)
            val_dataset = MnistDataset(mode='test', sample_num=sample_num)

            net = LeNet()
            optim = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=net.parameters())

            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]

            model = Model(net, inputs=inputs, labels=labels)
            model.prepare(
                optim,
                loss=CrossEntropyLoss(reduction="sum"),
                metrics=[Accuracy()])
            callbacks_0 = paddle.callbacks.EarlyStopping(
                'loss',
                mode='min',
                patience=1,
                verbose=1,
                min_delta=0,
                baseline=None,
                save_best_model=True)
            callbacks_1 = paddle.callbacks.EarlyStopping(
                'acc',
                mode='auto',
                patience=1,
                verbose=1,
                min_delta=0,
                baseline=0,
                save_best_model=True)
            callbacks_2 = paddle.callbacks.EarlyStopping(
                'loss',
                mode='auto_',
                patience=1,
                verbose=1,
                min_delta=0,
                baseline=None,
                save_best_model=True)
            callbacks_3 = paddle.callbacks.EarlyStopping(
                'acc_',
                mode='max',
                patience=1,
                verbose=1,
                min_delta=0,
                baseline=0,
                save_best_model=True)
            model.fit(
                train_dataset,
                val_dataset,
                batch_size=64,
                save_freq=10,
                save_dir=self.save_dir,
                epochs=10,
                verbose=0,
                callbacks=[callbacks_0, callbacks_1, callbacks_2, callbacks_3])
            # Test for no val_loader
            model.fit(train_dataset,
                      batch_size=64,
                      save_freq=10,
                      save_dir=self.save_dir,
                      epochs=10,
                      verbose=0,
                      callbacks=[callbacks_0])

235 236 237

if __name__ == '__main__':
    unittest.main()