test_callbacks.py 3.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import time
import random
import tempfile
import shutil

21 22 23 24
from paddle import Model
from paddle.static import InputSpec
from paddle.vision.models import LeNet
from paddle.hapi.callbacks import config_callbacks
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39


class TestCallbacks(unittest.TestCase):
    def setUp(self):
        self.save_dir = tempfile.mkdtemp()

    def tearDown(self):
        shutil.rmtree(self.save_dir)

    def run_callback(self):
        epochs = 2
        steps = 50
        freq = 2
        eval_steps = 20

40
        inputs = [InputSpec([None, 1, 28, 28], 'float32', 'image')]
41 42
        lenet = Model(LeNet(), inputs)
        lenet.prepare()
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

        cbks = config_callbacks(
            model=lenet,
            batch_size=128,
            epochs=epochs,
            steps=steps,
            log_freq=freq,
            verbose=self.verbose,
            metrics=['loss', 'acc'],
            save_dir=self.save_dir)
        cbks.on_begin('train')

        logs = {'loss': 50.341673, 'acc': 0.00256}
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            for step in range(steps):
                cbks.on_batch_begin('train', step, logs)
                logs['loss'] -= random.random() * 0.1
                logs['acc'] += random.random() * 0.1
                time.sleep(0.005)
                cbks.on_batch_end('train', step, logs)
            cbks.on_epoch_end(epoch, logs)

            eval_logs = {'eval_loss': 20.341673, 'eval_acc': 0.256}
            params = {
                'steps': eval_steps,
                'metrics': ['eval_loss', 'eval_acc'],
            }
            cbks.on_begin('eval', params)
            for step in range(eval_steps):
                cbks.on_batch_begin('eval', step, eval_logs)
                eval_logs['eval_loss'] -= random.random() * 0.1
                eval_logs['eval_acc'] += random.random() * 0.1
                eval_logs['batch_size'] = 2
                time.sleep(0.005)
                cbks.on_batch_end('eval', step, eval_logs)
            cbks.on_end('eval', eval_logs)

            test_logs = {}
            params = {'steps': eval_steps}
            cbks.on_begin('test', params)
            for step in range(eval_steps):
                cbks.on_batch_begin('test', step, test_logs)
                test_logs['batch_size'] = 2
                time.sleep(0.005)
                cbks.on_batch_end('test', step, test_logs)
            cbks.on_end('test', test_logs)

        cbks.on_end('train')

    def test_callback_verbose_0(self):
        self.verbose = 0
        self.run_callback()

    def test_callback_verbose_1(self):
        self.verbose = 1
        self.run_callback()

    def test_callback_verbose_2(self):
        self.verbose = 2
        self.run_callback()


if __name__ == '__main__':
    unittest.main()